题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
using namespace std;
const int maxn=,inf=1e9;
int n,m,ans1,ans2;
int h[maxn],mp[maxn][maxn],l[maxn],r[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int sqr(int x){return x*x;}
void dp()
{
memset(h,,(m+)<<);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
if(mp[i][j])h[j]++;else h[j]=;
for(int j=;j<=m;j++)
if(mp[i][j])
for(l[j]=j;h[j]<=h[l[j]-]&&mp[i][l[j]-];l[j]=l[l[j]-]);
for(int j=m;j;j--)
if(mp[i][j])
for(r[j]=j;h[j]<=h[r[j]+]&&mp[i][r[j]+];r[j]=r[r[j]+]);
for(int j=;j<=m;j++)
ans1=max(ans1,(r[j]-l[j]+)*h[j]);
for(int j=;j<=m;j++)
ans2=max(ans2,min(sqr(r[j]-l[j]+),sqr(h[j])));
}
}
int main()
{
read(n);read(m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
read(mp[i][j]),mp[i][j]=((i+j)&?mp[i][j]:!mp[i][j]);
dp();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)mp[i][j]=!mp[i][j];
dp();
printf("%d\n%d",ans2,ans1); }

bzoj1057: [ZJOI2007]棋盘制作(悬线法)的更多相关文章

  1. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  3. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  4. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  5. P1169 [ZJOI2007]棋盘制作——悬线法

    ---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...

  6. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  7. P1169 [ZJOI2007]棋盘制作 悬线法or单调栈

    思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...

  8. 【ZJOI2007】棋盘制作 - 悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 \(8 \times 8\) 大小的黑白相间的方阵,对应八八六十四卦 ...

  9. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

  10. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

随机推荐

  1. ReadyAPI创建功能测试的方法

    声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 在ReadyAPI中有多种方法可以创建功能测试,本篇将分步操作创建功能测试. 1.从So ...

  2. Linux命令应用大词典-第26章 模块和内核管理

    26.1 lsmod:显示内核中模块的状态 26.2 get_module:查看内核模块详细信息 26.3 modinfo:显示内核模块信息

  3. C 进制 类型说明符 位运算 char类型

    一 进制 1. 什么是进制 是一种计数的方式 数值的表示形式 2. 二进制 1> 特点: 只有0和1 逢2进1 2> 书写格式: 0b或者0B开头 3> %d 以带符号的十进制形式输 ...

  4. vue中如何实现pdf文件预览?

    今天产品提出一个优化的需求,就是之前我们做的图片展示就是一个img标签搞定,由于我们做的是海外后台管理系统,那边的人上传的文件时pdf格式,vue本事是不支持这种格式文件展示的,于是就google搜索 ...

  5. 悲剧文本(Broken Keyboard (a.k.a. Beiju Text),UVA 11988)

    题目描述: 题目思路: 1.使用链表来重新定位各个字符 2.用数组实现链表 3.开一个数组list[i]来存储字符数组下一个字符的位置 #include <iostream> #inclu ...

  6. php多进程单例模式下的 MySQL及Redis连接错误修复

    前几天写了个php常驻脚本,主要逻辑如下 //跑完数据后休息60秒 $sleepTime = 60; $maxWorker = 10; while (true) { $htmlModel = new ...

  7. iOS-修改导航栏文字字体和颜色

    //修改导航栏文字字体和颜色 nav.navigationBar.titleTextAttributes = @{NSForegroundColorAttributeName:[RGBColor co ...

  8. seaj和requirejs模块化的简单案例

    如今,webpack.gulp等构件工具流行,有人说seajs.requirejs等纯前端的模块化工具已经被淘汰了,我不这么认为,毕竟纯前端领域想要实现模块化就官方来讲,还是有一段路要走的.也因此纯前 ...

  9. 【APS.NET Core】- 应用程序Startup类介绍

    转自:https://www.cnblogs.com/stulzq/p/7845026.html Startup类配置服务和应用程序的请求管道. Startup 类 ASP.NET Core应用程序需 ...

  10. (转)Elasticsearch .net client NEST使用说明 2.x

    Elasticsearch.Net与NEST是Elasticsearch为C#提供的一套客户端驱动,方便C#调用Elasticsearch服务接口.Elasticsearch.Net是较基层的对Ela ...