bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
using namespace std;
const int maxn=,inf=1e9;
int n,m,ans1,ans2;
int h[maxn],mp[maxn][maxn],l[maxn],r[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int sqr(int x){return x*x;}
void dp()
{
memset(h,,(m+)<<);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
if(mp[i][j])h[j]++;else h[j]=;
for(int j=;j<=m;j++)
if(mp[i][j])
for(l[j]=j;h[j]<=h[l[j]-]&&mp[i][l[j]-];l[j]=l[l[j]-]);
for(int j=m;j;j--)
if(mp[i][j])
for(r[j]=j;h[j]<=h[r[j]+]&&mp[i][r[j]+];r[j]=r[r[j]+]);
for(int j=;j<=m;j++)
ans1=max(ans1,(r[j]-l[j]+)*h[j]);
for(int j=;j<=m;j++)
ans2=max(ans2,min(sqr(r[j]-l[j]+),sqr(h[j])));
}
}
int main()
{
read(n);read(m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
read(mp[i][j]),mp[i][j]=((i+j)&?mp[i][j]:!mp[i][j]);
dp();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)mp[i][j]=!mp[i][j];
dp();
printf("%d\n%d",ans2,ans1); }
bzoj1057: [ZJOI2007]棋盘制作(悬线法)的更多相关文章
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- P1169 [ZJOI2007]棋盘制作——悬线法
---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...
- [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵
https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...
- P1169 [ZJOI2007]棋盘制作 悬线法or单调栈
思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...
- 【ZJOI2007】棋盘制作 - 悬线法
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 \(8 \times 8\) 大小的黑白相间的方阵,对应八八六十四卦 ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- [P1169] 棋盘制作 &悬线法学习笔记
学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...
随机推荐
- 180606-Linux下jdk中文乱码问题解决
文章链接:https://liuyueyi.github.io/hexblog/2018/06/06/180606-Linux下jdk中文乱码问题解决/ linux下jdk中文乱码问题解决 之前遇到过 ...
- Linux命令应用大词典-第9章 数字计算
9.1 bc:任意精度的计算器 9.2 dc:一个任意精度的计算器 9.3 expr:将表达式的值打印到标准输出 9.1 bc:任意精度的计算器 9.2 dc:一个任意精度的计算器 9.3 expr: ...
- Python中assert的作用?
1. assert 的作用是什么? assert这个关键字我们称之为“断言”,当这个关键字后边的条件为假的时候,程序自动崩溃并抛出AssertionError的异常. 什么情况下我们会需要这样的代码呢 ...
- kettle_简单入门
简介 Kettle是一款纯Java开发的ETL工具,它是跨平台的,所以它可以在Window.Linux.Unix上运行.注意什么是ETL,读者可以自行百度了解,我的理解是将一个数据库的数据导入到另外一 ...
- HDU - 6438(贪心+思维)
链接:HDU - 6438 题意:给出 n ,表示 n 天.给出 n 个数,a[i] 表示第 i 天,物品的价格是多少.每天可以选择买一个物品,或者卖一个已有物品,也可以什么都不做,问最后最大能赚多少 ...
- leetcode-第k个排列(Java和c++版)
第k个排列 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" " ...
- chrome编辑器与截图
在地址栏中输入 data:text/html,<html contenteditable>即可使用编辑功能,打开控制台,ctrl + shift + p 调用命令面板,输入 capture ...
- jstat命令
jstat命令使用 jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat [-命令选项] [vmid] [间隔时间/毫秒] [查询次数] 注意:使用的jdk版本是 ...
- Elasticsearch 排序插件的开发
直接观察到的几个问题 简单expression脚本的执行效率 > java 插件,10000条数据可以测试出1ms左右的差距. Es会不断调用newScript来创建"足够多" ...
- LeetCode - 13. Roman to Integer - 思考if-else与switch的比较 - ( C++ ) - 解题报告
1.题目: 原题:Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range ...