3156: 防御准备

Time Limit: 10 Sec  Memory Limit: 512 MB

Submit: 2207  Solved: 933

[Submit][Status][Discuss]

Description

Input

第一行为一个整数N表示战线的总长度。

第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。

Output

共一个整数,表示最小的战线花费值。

Sample Input





10

2 3 1 5 4 5 6 3 1 2


Sample Output



18


HINT

1<=N<=10^6,1<=Ai<=10^9

练了几题,这类题目的模式还是很固定好写的

就不推了

设f[i]表示i位置放防御塔的最小代价

显然有f[i] = min{f[j] + (i - j) * (i - j - 1) / 2} + A[i]    【中间那一段就是中间木偶的代价】

去掉常数化简有2 * i * j + 2 * f[i] = (2 * f[j] + j^2 + j)

令y = 2 * f[j] + j^2 + j,x = j

就是y = 2i * x + 2 * f[i]

化为求截距最小,由于所有值都是单调递增,维护下凸包

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
LL n,q[maxn],head,tail;
LL A[maxn],f[maxn];
inline double slope(LL u,LL v){
double y1 = 2 * f[u] + u * u + u,y2 = 2 * f[v] + v * v + v;
return (y1 - y2) / (u - v);
}
inline LL getf(LL i,LL j){
return f[j] + (i - j) * (i - j - 1) / 2 + A[i];
}
int main()
{
n = read();
REP(i,n) A[i] = read();
head = tail = 0;
for (LL i = 1; i <= n; i++){
while (head < tail && slope(q[head],q[head + 1]) + eps < 2 * i) head++;
f[i] = getf(i,q[head]);
while (head < tail && slope(q[tail],q[tail - 1]) + eps > slope(i,q[tail])) tail--;
q[++tail] = i;
}
cout<<f[n]<<endl;
return 0;
}

BZOJ3156: 防御准备 【斜率优化dp】的更多相关文章

  1. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  2. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  3. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  4. bzoj3156 防御准备 - 斜率优化

    Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...

  5. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  6. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  7. 【BZOJ3156】防御准备 斜率优化

    [BZOJ3156]防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小 ...

  8. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  9. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  10. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

随机推荐

  1. MySQL☞upper函数

    upper(列名/字符串):把小写字母改为大写字母 格式: select  upper(列名/字符串) from 表名 如下图:

  2. CentOS 7.2-编译安装zabbix 3.4

    起因: 前面已经使用yum安装了zabbix 3.4了,准备去交差了,交差时老大明确要求必须使用编译安装,统一放在/usr/local目录下.... 重来吧!! 一.环境说明 本次安装使用CentOS ...

  3. 为什么Python在列表和元组的末尾允许使用逗号?

    Python 允许您在列表,元组和字典的末尾添加一个尾随逗号: [1, 2, 3,] ('a', 'b', 'c',) d = { "A": [1, 5], "B&quo ...

  4. (python)leetcode刷题笔记 02 Add Two Numbers

    2. Add Two Numbers You are given two non-empty linked lists representing two non-negative integers. ...

  5. 利用AWS的EC2实例配合Putty访问Google账户

    首先,我们需要一个amazon的帐号,该帐号可以开始AWS服务,第一次使用时需要绑定信用卡并扣1美元,然后再退还到我们的卡中,就是要验证一下信用卡帐户的有效性哦.有了这个帐号就可以尽情地享受AWS提供 ...

  6. ubuntu samba配置注意事项

    1. 下载samba前, ubuntu镜像源需要更新为国内源,否则samba的安装会非常慢 亲测,清华的镜像源速度满足要求. A.登录 https://mirrors.tuna.tsinghua.ed ...

  7. Linear Equations in Linear Algebra

    Linear System Vector Equations The Matrix Equation Solution Sets of Linear Systems Linear Indenpende ...

  8. opencv-学习笔记(4)-模糊

    opencv-学习笔记(4)-模糊 本章要点: 4种模糊方式 2d卷积 Cv2.filter2D(‘图像对象’,‘目标图像这里直接设为-1即可’,kernal,anchor(-1,-1)) 一般后一个 ...

  9. Python—字典(当索引不好用时)

    一.定义与概念 1.字典是针对非序列集合而提供的一种数据类型 举例:检索学生信息. “<键><值>对”. 键(即身份证号码) 值(即学生信息). “键值对”例子 姓名和电话号码 ...

  10. 如何用vs查看框架函数管道模型

    调试状态下 函数调用的 代码图,我们可以看到MVC框架的函数管道模型 源文章标题: 源文章:https://www.cnblogs.com/1996V/p/9037603.html 扩展阅读:http ...