CF708C-Centroids
题目
一棵树的重心定义为一个点满足删除这个点后最大的连通块大小小于等于原来这颗树大小的一半。
给出一棵树,一次操作为删除一条边再添加一条边,操作结束后必须仍为一棵树。问这颗树的每个点是否可以通过一次操作使它变成新树的重心。
\(n\le 4\times 10^5\)。
分析
如果一个点原来不是重心,那么这个点必定只有一个子树的大小大于\(\frac{n}{2}\) 。要让这个点变成重心,那么需要在这个子树中切出尽量大的一块,使它的大小小于等于\(\frac{n}{2}\) 。如果这颗子树中剩下的大小也小于等于\(\frac{n}{2}\) ,那么就可以,否则一定不行。
于是问题就变成了求对于每个点,以它为根的子树中最大能切出一个多大的子树,大小小于等于 \(\frac{n}{2}\) ;除去这个点的子树剩下的树中最大能切出多大的子树,大小小于等于\(\frac{n}{2}\) (即上面的那颗“子树”)。
这可以通过两次dfs(树形dp)得到,一次求\(\text{down[x]}\),一次用\(\text{down}\)的信息求出\(\text{up[x]}\) 。一个点的\(\text{up}\)有可能是父亲的\(\text{up}\) ,也有可能是切掉它连去父亲的那条边得到的子树大小,也可能是父亲的另一颗子树的\(\text{down}\)。
这题的关键其实在于想到**在这个子树中切出尽量大的一块,使它的大小小于等于\(\frac{n}{2}\) ** ,而不是找其中重心之类思路。
代码
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=4e5+1;
int n,hf,size[maxn],up[maxn],down[maxn],which[maxn],msize[maxn];
bool ans[maxn];
vector<int> g[maxn];
void add(int x,int y) {g[x].push_back(y);}
int Size(int x,int fa) {
int &sz=size[x]=1,&ms=msize[x]=0;
for (int v:g[x]) if (v!=fa) {
int ret=Size(v,x);
sz+=ret,ms=max(ms,ret);
}
ms=max(ms,n-size[x]);
return sz;
}
void Root(int x,int fa) {
for (int v:g[x]) if (v!=fa && size[v]>=hf) which[x]=v,Root(v,x);
}
void Down(int x,int fa) {
for (int v:g[x]) if (v!=fa) Down(v,x),down[x]=max(down[x],down[v]);
if (size[x]<=hf) down[x]=size[x];
}
void Up(int x,int fa) {
pair<int,int> fir(0,0),sec(0,0);
for (int v:g[x]) if (v!=fa) if (down[v]>fir.first) swap(fir,sec),fir=make_pair(down[v],v); else if (down[v]>sec.first) sec=make_pair(down[v],v);
for (int v:g[x]) if (v!=fa) {
int &nxt=up[v]=max(up[x],v==fir.second?sec.first:fir.first);
if (n-size[v]<=hf) nxt=max(nxt,n-size[v]);
Up(v,x);
}
}
void dfs(int x,int fa) {
if (msize[x]<=hf) ans[x]=true; else {
if (which[x]>0) ans[x]=(size[which[x]]-down[which[x]]<=hf); else
ans[x]=(n-size[x]-up[x]<=hf);
}
for (int v:g[x]) if (v!=fa) dfs(v,x);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
hf=(n=read())>>1;
for (int i=1;i<n;++i) {
int x=read(),y=read();
add(x,y),add(y,x);
}
Size(1,1),Root(1,1);
Down(1,1);
Up(1,1);
dfs(1,0);
for (int i=1;i<=n;++i) putchar("01"[ans[i]]),putchar(" \n"[i==n]);
return 0;
}
CF708C-Centroids的更多相关文章
- CF708C Centroids(树形DP)
发现变重心就是往重心上割,所以\(\text{up and down}\),一遍统计子树最大\(size\),一遍最优割子树,\(down\),\(up\)出信息,最后\(DFS\)出可行解 #inc ...
- codeforces708C
CF708C Centroids 题意翻译 给定一颗树,你有一次将树改造的机会,改造的意思是删去一条边,再加入一条边,保证改造后还是一棵树. 请问有多少点可以通过改造,成为这颗树的中心?(如果以某个点 ...
- codeforces 709E E. Centroids(树形dp)
题目链接: E. Centroids time limit per test 4 seconds memory limit per test 512 megabytes input standard ...
- 【CodeForces】708 C. Centroids 树的重心
[题目]C. Centroids [题意]给定一棵树,求每个点能否通过 [ 移动一条边使之仍为树 ] 这一操作成为树的重心.n<=4*10^5. [算法]树的重心 [题解]若树存在双重心,则对于 ...
- Codeforces Round #670 (Div. 2) C. Link Cut Centroids (dfs,树)
C. Link Cut Centroids Fishing Prince loves trees, and he especially loves trees with only one centro ...
- (ICONIP2021)On the Unreasonable Effectiveness of Centroids in Image
目录 摘要 1.引言 2.提出的方法 2.1 CentroidTripletloss 2.2 聚合表示 3.实验 3.1 数据集 3.2 应用细节 3.3 Fashion检索结果 3.4 行人再识别结 ...
- Codeforces708C Centroids 【树形dp】
题目链接 题意:给定一棵n个结点的树,问:对于每个结点,能否通过删除一条边并添加一条边使得仍是树,并且删除该结点后得到的各个连通分量结点数 <= n/2? 题解:树形dp,两遍dfs,第一遍df ...
- Codeforces 709E. Centroids 树形DP
题目链接:http://codeforces.com/contest/709/problem/E 题意: 给你一棵树,你可以任删一条边和加一条边,只要使得其仍然是一棵树,输出每个点是否都能成为重心 题 ...
- CF708C题解
挺简单的一道数据结构... 首先考虑这个"改造"的本质,很明显是把一颗子树塞到了另一个节点下面. 考虑一个节点可能成为重心的条件.条件很明显是只有一颗子树的大小大于 \(\frac ...
- Centroids (换根DP)
题面 题解 删一条边.加一条边,相当于把一个子树折下来,然后嫁接在一个点上, 那么最优的情况肯定是接在根上,对吧,很好理解吧 那么这个拆下来的子树大小就不能超过n/2. 我们用son[]来表示每个点为 ...
随机推荐
- 记录使用jQuery和Python抓取采集数据的一个实例
从现成的网站上抓取汽车品牌,型号,车系的数据库记录. 先看成果,大概4w条车款记录 一共建了四张表,分别存储品牌,车系,车型和车款 大概过程: 使用jQuery获取页面中呈现的大批内容 能通过页面一次 ...
- Swing 解决 idea 找不到创建gui form的问题
果然,寄希望于百度google不如自己动手,还是得吃透文档, 然后就是对于别人的博客要严格对照步骤来,否则都容易达不到效果 这边gui form在idea下找不到创建,百度google一个说的也没有, ...
- selenium webdriver API详解(三)
本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取页面元素的文本内容:text 例:获取我的博客名字文本内容 代码 ...
- fiddler的断点使用
功能 用于修改数据 1.断点设置请求之前--修改请求数据 2.断点设置在响应时--对响应的数据修改 已中断的会话最前面的图标为红色的带箭头的标志 设置断点方法 1.菜单栏:rules->auto ...
- AWS探索及创建一个aws EC2实例
一.AWS登陆 1.百度搜索aws,或者浏览器输入:http://aws.amazon.com 2.输入账户及密码登陆(注册流程按照提示走即可) 二.创建EC2实例(相当于阿里云的ecs) 1.找到E ...
- TPO-17 C1 Find materials for an opera paper
TPO-17 C1 Find materials for an opera paper production n. 成果:产品:生产:作品 第 1 段 1.Listen to a conversati ...
- 搭建RTSP服务器时nginx的nginx.conf文件配置
worker_processes 1; events { worker_connections 1024;} http { include mime.types; default_type appli ...
- Python基础知识-06-集合内存布尔False
python其他知识目录 1.判断一个字符串中是否有敏感字符? #str: m_str="我叫魔降风云变" if "魔" in m_str: #判断指定字符是否 ...
- UI优秀框架(库)
1.vux 官网:https://doc.vux.li/zh-CN/ Github:https://github.com/airyland/vux 13818 Stars 3064 Forks ...
- JavaScript之函数柯里化
什么是柯里化(currying)? 维基百科中的解释是:柯里化是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数而且返回结果的新函数的技术.意思就是当函 ...