UVALive 6811 Irrigation Line(二分图最小点覆盖--匈牙利算法)
题意:求最少的线可以覆盖一个由0、1两种数字组成的图中所有的1。
eg:
只需要两条线即可。
分析:
1、先为上述例子的行列标号
2、若图中数字为1,则代表该数字所在的行与列有关联。
例如第r1行第c3列的数字1,可以看成r1和c3为两个点,因为此处是数字1,所以这两个点之间可以连1条线
3、所以可转化为如下的二分图
4、可以简单的理解为只要图中某个位置是数字1,就可以连一条线,线的两个端点是行号和列号。
5、因此本题就转化为了,求能覆盖所有边的最少的点数
6、由上图易知,r2和c3两个点就可以覆盖所有的边,回到原题就是只要在第r2行和第c3列画上线即可覆盖所有的1
7、由二分图的性质可知,最小匹配数等于最大点覆盖数,因此用匈牙利算法求解。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) a < b ? a : b
#define Max(a, b) a < b ? b : a
typedef long long ll;
typedef unsigned long long llu;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const ll LL_INF = 0x3f3f3f3f3f3f3f3f;
const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {, , -, };
const int dc[] = {-, , , };
const double pi = acos(-1.0);
const double eps = 1e-;
const int MAXN = + ;
const int MAXT = + ;
using namespace std;
char a[MAXN][MAXN];
int mp[MAXN][MAXN];
int match[MAXN];
bool used[MAXN];
int M, N;
bool Find(int x){
for(int i = ; i <= N; ++i){
if(!used[i] && mp[x][i]){
used[i] = true;
if(!match[i] || Find(match[i])){
match[i] = x;
return true;
}
}
}
return false;
}
void solve(){
int ans = ;
for(int i = ; i <= M; ++i){
memset(used, false, sizeof used);
if(Find(i)) ++ans;
}
printf("%d\n", ans);
}
int main(){
int T;
scanf("%d", &T);
for(int i = ; i <= T; ++i){
memset(a, , sizeof a);
memset(mp, , sizeof mp);
memset(match, , sizeof match);
scanf("%d%d", &M, &N);
for(int i = ; i < M; ++i){
scanf("%s", a[i]);
}
for(int i = ; i < M; ++i){
for(int j = ; j < N; ++j){
if(a[i][j] == ''){
mp[i + ][j + ] = ;
}
}
}
printf("Case #%d: ", i);
solve();
}
return ;
}
UVALive 6811 Irrigation Line(二分图最小点覆盖--匈牙利算法)的更多相关文章
- [POJ3041] Asteroids(最小点覆盖-匈牙利算法)
传送门 题意: 给一个N*N的矩阵,有些格子有障碍,要求我们消除这些障碍,问每次消除一行或一列的障碍,最少要几次. 解析: 把每一行与每一列当做二分图两边的点. 某格子有障碍,则对应行与列连边. ...
- 四川第七届 D Vertex Cover(二分图最小点覆盖,二分匹配模板)
Vertex Cover frog has a graph with nn vertices v(1),v(2),…,v(n)v(1),v(2),…,v(n) and mm edges (v(a1), ...
- [POJ] 2226 Muddy Fields(二分图最小点覆盖)
题目地址:http://poj.org/problem?id=2226 二分图的题目关键在于建图.因为“*”的地方只有两种木板覆盖方式:水平或竖直,所以运用这种方式进行二分.首先按行排列,算出每个&q ...
- 二分图 最小点覆盖 poj 3041
题目链接:Asteroids - POJ 3041 - Virtual Judge https://vjudge.net/problem/POJ-3041 第一行输入一个n和一个m表示在n*n的网格 ...
- Asteroids POJ - 3041 二分图最小点覆盖
Asteroids POJ - 3041 Bessie wants to navigate her spaceship through a dangerous asteroid field in ...
- UVA1194 Machine Schedule[二分图最小点覆盖]
题意翻译 有两台机器 A,B 分别有 n,m 种模式. 现在有 k 个任务.对于每个任务 i ,给定两个整数$ a_i\(和\) b_i$,表示如果该任务在 A上执行,需要设置模式为 \(a_i\): ...
- 二分图最小点覆盖构造方案+König定理证明
前言 博主很笨 ,如有纰漏,欢迎在评论区指出讨论. 二分图的最大匹配使用 \(Dinic\) 算法进行实现,时间复杂度为 \(O(n\sqrt{e})\),其中, \(n\)为二分图中左部点的数量, ...
- POJ2226 Muddy Fields(二分图最小点覆盖集)
题目给张R×C的地图,地图上*表示泥地..表示草地,问最少要几块宽1长任意木板才能盖住所有泥地,木板可以重合但不能盖住草地. 把所有行和列连续的泥地(可以放一块木板铺满的)看作点且行和列连续泥地分别作 ...
- POJ1325 Machine Schedule(二分图最小点覆盖集)
最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边. 二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集) 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点: 每个任务就 ...
随机推荐
- error LNK2019: unresolved external symbol / error LNK2001: 无法解析的外部符号
在 vc++ 2008 和 vc++ 2010 编译时分别出现上面的错误.一般这种错误是由于引用函数未定义造成的,如外部类库未包含,实现代码未编写等. 但最终检查的结果,却是另外一种情况:文件名重名. ...
- CODEFORCE 246 Div.2 B题
题目例如以下: B. Football Kit time limit per test 1 second memory limit per test 256 megabytes input stand ...
- 细看InnoDB数据落盘 图解 MYSQL 专家hatemysql
http://hatemysql.com/?p=503 1. 概述 前面很多大侠都分享过MySQL的InnoDB存储引擎将数据刷新的各种情况.我们这篇文章从InnoDB往下,看看数据从InnoDB的 ...
- 【ZZ】大数据架构师基础:hadoop家族,Cloudera系列产品介绍
http://www.36dsj.com/archives/17192 大数据我们都知道hadoop,可是还会各种各样的技术进入我们的视野:Spark,Storm,impala,让我们都反映不过来.为 ...
- UNIX标准化及实现之POSIX标准必需头文件
POSIX标准定义的必需头文件 头文件 说明 <dirent.h> 目录项 <fcntl.h> 文件控制 <fnmatch.h> 文件名匹配类型 <glob. ...
- C#轻型ORM框架PetaPoco试水
近端时间从推酷app上了解到C#轻微型的ORM框架--PetaPoco.从github Dapper 开源项目可以看到PetaPoco排第四 以下是网友根据官方介绍翻译,这里贴出来. PetaPoco ...
- 《Entity Framework 6 Recipes》中文翻译——第九章EntityFramework在N层架构程序中的应用(七)
在WCF服务中的序列化代理 问题 您有一个从查询返回的动态代理对象,你想要把它像POCO对象已经进行序列化.在序列化基于实体对象的POCO(普通旧CLR对象)时,实体框架会自动生成一个动态生成的派生类 ...
- CSS skills: 3) show sub-navigate items when mouse hove on nav-item
<header> <div class="am-g am-g-fixed"> <ul class="am-avg-lg-2 topbar f ...
- jQuery扩展工具方法
共享学习Jquery源码的一些东西 jQuery.extend({ expando : 生成唯一JQ字符串(内部) noConflict() : 防止冲突 ---------------- ...
- python(7)– 类的反射
python中的反射功能是由以下四个内置函数提供:hasattr.getattr.setattr.delattr,改四个函数分别用于对对象内部执行:检查是否含有某成员.获取成员.设置成员.删除成员. ...