吴裕雄 python 人工智能——智能医疗系统后台用户复诊模块简约版代码展示
#复诊
import sys
import os
import time
import operator
import cx_Oracle
import numpy as np
import pandas as pd
import tensorflow as tf uid = 6
sql = "select username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiyuaan,yisheng,jianchaxiang,zhenduanriqi from zhenduanjilutable where userid=%d" % uid
cursor.execute(sql)
rows = cursor.fetchall()
zhenduanjilu = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
temp.append(row[5])
temp.append(row[6])
temp.append(row[7])
temp.append(row[8])
temp.append(row[9])
temp.append(row[10])
temp.append(row[11])
temp.append(row[12])
temp.append(row[13])
zhenduanjilu.append(temp) print("===================打印诊断历史记录=====================")
for i in range(len(zhenduanjilu)):
print("-------------->>第:"+str(i+1)+"次诊断<<-------------------")
print(" 姓名:"+zhenduanjilu[i][0])
print(" 性别:"+zhenduanjilu[i][1])
print(" 年龄:"+str(zhenduanjilu[i][2]))
print(" 省份:"+zhenduanjilu[i][3])
print(" 市区:"+zhenduanjilu[i][4])
print(" 门诊部门:"+zhenduanjilu[i][5])
print(" 门诊科目:"+zhenduanjilu[i][6])
print(" 诊断结果:"+zhenduanjilu[i][7])
print(" 医疗处方:"+zhenduanjilu[i][8])
print(" 养生建议:"+zhenduanjilu[i][9])
print(" 推荐医院:"+zhenduanjilu[i][10])
print(" 推荐医生:"+zhenduanjilu[i][11])
print(" 建议检查项:"+zhenduanjilu[i][12])
print(" 诊断日期:"+str(zhenduanjilu[i][13])) num = int(input("请输入需要复诊的对应第几次诊断记录编号:"))
print("===================开始复诊流程=====================")
num -= 1
username=zhenduanjilu[num][0]
sex=zhenduanjilu[num][1]
age=zhenduanjilu[num][2]
province=zhenduanjilu[num][3]
area=zhenduanjilu[num][4]
bumen=zhenduanjilu[num][5]
ke=zhenduanjilu[num][6] sql = "select keid from hy_keid where ke='%s'" % ke
cursor.execute(sql)
rows = cursor.fetchall()
keid = []
for row in rows:
keid.append(row[0]) sql = "select QUESTION from HY_QUESTID where QUID=%d" % keid[0]
cursor.execute(sql)
rows = cursor.fetchall()
question = []
for row in rows:
question.append(row[0])
question = question[0].split(",")
# print(question)
answer = []
for i,j in zip(question,np.arange(len(question))):
print("问题"+str(j+1)+":是否"+i+":")
print(" A、正常 B、较轻 C、明显 D、非常严重")
temp = input("请根据实际情况选择上面的一项:")
if(temp=="A"):
answer.append(1)
elif(temp=="B"):
answer.append(2)
elif(temp=="C"):
answer.append(3)
else:
answer.append(4) surgery = bumen
surgeryChest = ke #one-hot编码
def onehot(labels):
n_sample = len(labels)
n_class = max(labels) + 1
onehot_labels = np.zeros((n_sample, n_class))
onehot_labels[np.arange(n_sample), labels] = 1
return onehot_labels #获取数据集
def getdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from menzhen where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
dataset = []
lables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
dataset.append(temp)
if(row[5]==3):
lables.append(0)
elif(row[5]==6):
lables.append(1)
else:
lables.append(2)
dataset = np.array(dataset)
lables = np.array(lables)
dataset = dataset.astype(np.float32)
labless = onehot(lables)
return dataset,labless #获取测试数据集
def gettestdata(surgery,surgeryChest):
sql = "select feature1,feature2,feature3,feature4,feature5,trainLable from test where surgery='%s' and surgeryChest='%s'" % (surgery,surgeryChest)
cursor.execute(sql)
rows = cursor.fetchall()
testdataset = []
testlables = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
testdataset.append(temp)
if(row[5]==3):
testlables.append(0)
elif(row[5]==6):
testlables.append(1)
else:
testlables.append(2)
testdataset = np.array(testdataset)
testlables = np.array(testlables)
testdataset = testdataset.astype(np.float32)
testlabless = onehot(testlables)
return testdataset,testlabless dataset,labless = getdata(surgery,surgeryChest)
# testdataset,testlables = gettestdata(surgery,surgeryChest) # dataset = dataset[0:100]
# labless = labless[0:100] x_data = tf.placeholder("float32", [None, 5])
y_data = tf.placeholder("float32", [None, 3]) weight = tf.Variable(tf.ones([5, 3]))
bias = tf.Variable(tf.ones([3])) #使用softmax激活函数
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias) #y_model = tf.nn.relu(tf.matmul(x_data, weight) + bias) # loss = tf.reduce_sum(tf.pow((y_model - y_data), 2)) #使用交叉熵作为损失函数
loss = -tf.reduce_sum(y_data*tf.log(y_model)) # train_step = tf.train.GradientDescentOptimizer(1e-4).minimize(loss) #使用AdamOptimizer优化器
# train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) train_step = tf.train.MomentumOptimizer(1e-4,0.9).minimize(loss) #评估模型
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
# start = time.time()
for _ in range(10):
for i in range(int(len(dataset)/100)):
sess.run(train_step, feed_dict={x_data:dataset[i:i+100,:], y_data:labless[i:i+100,:]}) # print("模型准确率",sess.run(accuracy, feed_dict={x_data:testdataset , y_data:testlables}))
# end = time.time()
# print("模型训练和测试公耗时:%.2f 秒" % (end-start)) xl_weight = sess.run(weight)
useranswer = [[1, 2, 3, 4, 4]]*3
W = np.dot(xl_weight,useranswer)
result=0
for i in range(len(W[0])):
for j in range(len(W[0,:])):
if(i==j):
result += W[i][j]
result = int(result/5)
# print(result) if(result<=3):
result = 3
elif(result<=6):
result = 6
else:
result = 9 sql = "select ILL_NAME from ill_result_tbZ where FAMILY='%s' and ILL_ID=%d" % (ke,result)
cursor.execute(sql)
rows = cursor.fetchall()
ILL_NAME = []
for row in rows:
ILL_NAME.append(row[0]) firstResult = ILL_NAME[0]
##
print("=======================系统复诊单===================")
print("姓名:"+username)
print("性别:"+sex)
print("年龄:"+str(age))
print("省份:"+province)
print("所属区:"+area)
print("初诊部门:"+bumen)
print("科目:"+ke)
##
print("系统智能诊断结果:"+firstResult) if(firstResult[:2]=="疑似"):
firstResult = "疑似患病" sql = "select PRESCRIPTION_1,PRESCRIPTION_2,PRESCRIPTION_3,PRESCRIPTION_4,PRESCRIPTION_5,PRESCRIPTION_6,PRESCRIPTION_7,PRESCRIPTION_8,PRESCRIPTION_9,PRESCRIPTION_10,PRESCRIPTION_11,PRESCRIPTION_12,PRESCRIPTION_13,PRESCRIPTION_14,PRESCRIPTION_15 from PRESCRIPTION where SURGERY='%s'and SURGERYCHEST='%s' and ILLNAME='%s'" % (bumen,ke,firstResult)
cursor.execute(sql)
rows = cursor.fetchall()
chufanggrace = []
for row in rows:
temp = []
temp.append(row[0])
temp.append(row[1])
temp.append(row[2])
temp.append(row[3])
temp.append(row[4])
temp.append(row[5])
temp.append(row[6])
temp.append(row[7])
temp.append(row[8])
temp.append(row[9])
temp.append(row[10])
temp.append(row[11])
temp.append(row[12])
temp.append(row[13])
temp.append(row[14])
chufanggrace.append(temp) PRESCRIPTION_sum = []
for col in range(np.shape(chufanggrace)[1]):
temp = 0
for row in range(np.shape(chufanggrace)[0]):
temp += chufanggrace[row][col]
PRESCRIPTION_sum.append(temp) b = sorted(enumerate(PRESCRIPTION_sum),key=lambda x:x[1],reverse=True)[:3]
index = []
for i in b:
index.append(i[0]) sql = "select PRESCRIPTIONINFO,HEALTH from PRESCRIPTIONINFO where DEPARTMENT='%s' and FAMILY='%s' and ILL_NAME='%s'" % (bumen,ke,firstResult)
cursor.execute(sql)
rows = cursor.fetchall()
chufanglist = []
jianyilist = []
for row in rows:
chufanglist.append(row[0])
jianyilist.append(row[1])
best_chufang = []
best_jianyi = []
for i in index:
best_chufang.append(chufanglist[i])
best_jianyi.append(jianyilist[i])
chufang_str = ""
jianyi_str = ""
for i,j in zip(best_chufang,range(len(best_chufang))):
chufang_str += "系统智能筛选优良处方"+str(j+1)+":" + i +"。"
print("系统智能筛选优良处方"+str(j+1)+":" + i) for i,j in zip(best_jianyi,range(len(best_jianyi))):
jianyi_str += "系统智能筛选优良养生建议"+str(j+1)+":" + i+"。"
print("系统智能筛选优良养生建议"+str(j+1)+":" + i) sql = "select HOSTITALNAME from DOCTORHOSTITALADRREST where PROVINCE='%s' and ADMINISTRATIVE='%s'" % (province,area)
cursor.execute(sql)
rows = cursor.fetchall()
yiyuan = []
for row in rows:
yiyuan.append(row[0])
for i in yiyuan:
print("系统智能匹配你所在地区附件的医院:"+i) sql = "select ADDRACTION,NAME,SUMMARY from DOCTORS where FAMILY='%s'" % (ke)
cursor.execute(sql)
rows = cursor.fetchall()
yisheng = []
for row in rows:
yisheng.append(row[0])
yisheng.append(row[1])
yisheng.append(row[2])
print("系统为你推荐全国相关出色医生所在医院信息:"+yisheng[0])
print("系统为你推荐全国相关出色医生姓名信息:"+yisheng[1])
print("系统为你推荐全国相关出色医生简介信息:"+yisheng[2])
yisheng_str = ""
yisheng_str += "医生所在医院:"+yisheng[0]
yisheng_str += "医生姓名:"+yisheng[1]
yisheng_str += "医生简介:"+yisheng[2] sql = "select CHACKPRO from CHACKPROJECT where FAMILY='%s'" % (ke)
cursor.execute(sql)
rows = cursor.fetchall()
jiancha = []
for row in rows:
jiancha.append(row[0])
print("系统建议你到相关正规医院检查以下身体指标:"+jiancha[0])
jianchax = ""
jianchax += "系统建议你到相关正规医院检查以下身体指标:"+jiancha[0] sql = "insert into zhenduanjilutable (userid,username,sex,age,province,area,bumen,ke,result,chufang,jianyi,yiyuaan,yisheng,jianchaxiang) values (%d,'%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % (uid,username,sex,age,province,area,bumen,ke,firstResult,chufang_str,jianyi_str,yiyuan[0],yisheng_str,jianchax)
cursor.execute(sql)
conn.commit()
print("此次智能诊断完成,欢迎你下次继续使用:天生自然健康智能医疗系统!") print("特别提醒、注意:该系统的所有诊断只是作为参考,有必需要的用户请到相关正规医院接受相关专家医生完成检查、治疗等流程...")
print("系统建议:保持一颗善良、沉稳、宁静和广博的平常心度过每一个清晨和夜晚...")
print("祝你们每一位人都开开心心、健健康康、平平安安...阖家安康,如意吉祥......")


吴裕雄 python 人工智能——智能医疗系统后台用户复诊模块简约版代码展示的更多相关文章
- 吴裕雄 python 人工智能——智能医疗系统后台用户注册、登录和初诊简约版代码展示
#用户注册.登录模块 #数据库脚本 CREATE TABLE usertable( userid number(8) primary key not null , username varchar(5 ...
- 吴裕雄 PYTHON 人工智能——智能医疗系统后台智能分诊模块及系统健康养生公告简约版代码展示
#coding:utf-8 import sys import cx_Oracle import numpy as np import pandas as pd import tensorflow a ...
- 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示
#K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...
- 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(5)
import os import sys import numpy as np import tensorflow as tf import matplotlib import matplotlib. ...
- 吴裕雄 PYTHON 人工智能——基于MASK_RCNN目标检测(4)
import os import sys import random import math import re import time import numpy as np import tenso ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(3)
import os import sys import random import math import re import time import numpy as np import cv2 i ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(2)
import os import sys import itertools import math import logging import json import re import random ...
- 吴裕雄 python 人工智能——基于Mask_RCNN目标检测(1)
import os import sys import random import math import numpy as np import skimage.io import matplotli ...
- 吴裕雄--天生自然Linux操作系统:Linux 用户和用户组管理
Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账号一方面可以帮助系统管理员对使用系统的用户进行 ...
随机推荐
- html中多选框变单选框
就是一个小js,直接上代码 $("input[name='checkboxlist']").each(function () { if (this.checked &&am ...
- C++——简单程序设计
1.一个简单的程序 #include <iostream> //iostream是头文件,用来说明要使用的对象的相关信息. using namespace std; //使用命名空间,解决 ...
- python3练习100题--024
因为过生日,好几天没做题了,有点松懈. 我要更加加油啦-为了打败现在每天都厌恶的生活! 原题链接:http://www.runoob.com/python/python-exercise-exampl ...
- 【转载】Hive vs HBase
转自:http://www.chinastor.com/a/hbase/0G3Z532014.html Hive是什么? Apache Hive是一个构建于Hadoop(分布式系统基础架构)顶层的数据 ...
- SpringBoot整合WEB开发--(三)文件上传
文件上传: Java中文件上传一共涉及到两个组件,CommonsMultipartResolver和StandardServletMultipartResolver,其中CommonsMultipar ...
- mysql中间件proxysql实现mysql读写分离
目录 1. mysql实现读写分离的方式 2. ProxySQL简介 3. ProxySQL安装 4. ProxySQL的Admin管理接口 5. 和admin管理接口相关的变量 5.1 admin- ...
- L2-1 分而治之
思路 这题的意思是,如果把这些点打掉,其他的点是否能够完全不连通. 用并查集,或者打上标记之后,判断每个点是否还能到达其他点,如果一个点可以到达其他任何点,都应该输出否. 代码 #include &l ...
- .net core 2.2 使用imagemagick 将pdf转化为png
工作需要将PDF文件每一页拆分为一个一个的png文件 测试环境:mac,visual studio for mac 2019 nuget:magick.net-Q16-AnyCPU 不能直接支持PDF ...
- 解决Cannot download "https://github.com/sass/node-sass/releases/download/binding.nod的问题
npm i node-sass --sass_binary_site=https://npm.taobao.org/mirrors/node-sass/
- jquery点击添加样式,再次点击移除样式
$("#divSetting").on("click", function () { $(this).toggleClass("open") ...