POJ 1330 Nearest Common Ancestors

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

一道关于LCA的算法题,太弱的我不会做。贴出大神的AC代码,仅供参考学习

#include<iostream>
#include<vector>
#define MAX 10010
using namespace std; int n,flag;
int f[MAX],r[MAX],ancestor[MAX];
int indegreen[MAX],vis[MAX];
vector<int> head[MAX],Que[MAX]; void Init()
{
int i,a,b;
cin>>n;
flag=0;
for(i=1;i<=n;i++)
{
head[i].clear();
Que[i].clear();
f[i]=i;
r[i]=1;
ancestor[i]=0;
indegreen[i]=0;
vis[i]=0;
}
for(i=1;i<n;i++)
{
cin>>a>>b;
head[a].push_back(b);
indegreen[b]++;
}
cin>>a>>b;
Que[a].push_back(b);
Que[b].push_back(a);
} int Find(int u)
{
if(f[u]==u)
return f[u];
else
f[u]=Find(f[u]);
return f[u];
} void Union(int v,int u)
{
int a,b;
a=Find(v);
b=Find(u);
if(a==b)
return ;
if(r[a]<=r[b])
{
f[a]=b;
r[b]+=r[a];
}
else
{
f[b]=a;
r[a]+=r[b];
}
} void LCA(int k)
{
int i,size;
size=head[k].size();
ancestor[k]=k;
for(i=0;i<size;i++)
{
if(flag)
break;
LCA(head[k][i]);
Union(k,head[k][i]);
ancestor[Find(k)]=k;
}
vis[k]=1;
size=Que[k].size();
for(i=0;i<size;i++)
{
if(vis[Que[k][i]])
{
flag=1;
cout<<ancestor[Find(Que[k][i])]<<endl;
return ;
}
}
} int main()
{
int T;
cin>>T;
while(T--)
{
Init();
for(int i=1;i<=n;i++)
{
if(!indegreen[i])
{
LCA(i);
break;
}
}
}
return 0;
}

  

POJ 1330 Nearest Common Ancestors(lca)的更多相关文章

  1. poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30147   Accept ...

  2. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  3. POJ 1330 Nearest Common Ancestors(Tree)

    题目:Nearest Common Ancestors 根据输入建立树,然后求2个结点的最近共同祖先. 注意几点: (1)记录每个结点的父亲,比较层级时要用: (2)记录层级: (3)记录每个结点的孩 ...

  4. poj 1330 Nearest Common Ancestors(LCA:最近公共祖先)

    多校第七场考了一道lca,那么就挑一道水题学习一下吧= = 最简单暴力的方法:建好树后,输入询问的点u,v,先把u全部的祖先标记掉,然后沿着v->rt(根)的顺序检查,第一个被u标记的点即为u, ...

  5. POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)

    题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...

  6. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  7. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  8. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  9. POJ 1330 Nearest Common Ancestors(裸LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39596   Accept ...

随机推荐

  1. bps、bit、byte的区别

    bps是速度单位,bit是大小单位,byte也是大小单位1bps=1bit每秒, 8bit=1byte 1 Byte = 8    bits1 KB   = 1024 Bytes1 MB   = 10 ...

  2. ubuntu kylin 设置 wifi

    左上侧  搜索资源 输入 软件和更新  点击软件和更新,点击附加驱动,点击使用无线驱动.

  3. apt 查询软件

    apt-cache search percona-server apt list percona-server-server-5.6

  4. partial分部类

    意义 1.源代码控制 2.将一个类或结构分成不同的逻辑单元 3.代码拆分

  5. JAVA中List的三个子类。

    JAVA中List的三个子类分别是:ArrayList,Vector,LinkList.下面就来比较一下他们的不同. ArrayList:底层数据结构是数组,查询快,增删慢,线程不安全,效率高. Ve ...

  6. inputStream输入流转为String对象(将String对象转为inputStream输入流)

    不得不说org.apache.commons包下有很多实用的工具类. org.apache.commons.io.IOUtils; 要将inputStream输入流转为String对象,只需使用org ...

  7. 快速上手Runtime(四)之动态添加方法

    如果一个类方法非常多,加载类到内存的时候也比较耗费资源,可以使用动态给某个类,添加方法解决.做到优化内存,节省资源的效果. // // Person.m // ResolveInstanceMetho ...

  8. iOS 打印结构体

    关于OC直接打印结构体,点(CGRect,CGSize,CGPoint,UIOffset)等数据类型,我们完全可以把其转换为OC对象来进项打印调试,而不必对结构体中的成员变量进行打印.就好比我们可以使 ...

  9. 利用SHELL脚本修改当前环境变量

    转自http://www.chinaunix.net/old_jh/7/21485.html 1.背景 ---- 在日常的工作中,为了设置一大批环境变量,我们通常编辑了一个shell程序,包含了多个的 ...

  10. sql查询exist替换in

    很多时候用 exists 代替 in 是一个好的选择: select num from a where num in(select num from b) 用下面的语句替换: select num f ...