一、指标内容

+| Metric Name                                          | Type    | Tags                     | Description                                                                            |
+|------------------------------------------------------|---------|--------------------------|----------------------------------------------------------------------------------------|
+| table_optimizing_status_idle_duration_mills | Gauge | catalog, database, table | Duration in milliseconds after table be in idle status |
+| table_optimizing_status_pending_duration_mills | Gauge | catalog, database, table | Duration in milliseconds after table be in pending status |
+| table_optimizing_status_planning_duration_mills | Gauge | catalog, database, table | Duration in milliseconds after table be in planning status |
+| table_optimizing_status_executing_duration_mills | Gauge | catalog, database, table | Duration in milliseconds after table be in executing status |
+| table_optimizing_status_committing_duration_mills | Gauge | catalog, database, table | Duration in milliseconds after table be in committing status |
+| table_optimizing_process_total_count | Counter | catalog, database, table | Count of all optimizing process since ams started |
+| table_optimizing_process_failed_count | Counter | catalog, database, table | Count of failed optimizing process since ams started |
+| table_optimizing_minor_total_count | Counter | catalog, database, table | Count of minor optimizing process since ams started |
+| table_optimizing_minor_failed_count | Counter | catalog, database, table | Count of failed minor optimizing process since ams started |
+| table_optimizing_major_total_count | Counter | catalog, database, table | Count of major optimizing process since ams started |
+| table_optimizing_major_failed_count | Counter | catalog, database, table | Count of failed major optimizing process since ams started |
+| table_optimizing_full_total_count | Counter | catalog, database, table | Count of full optimizing process since ams started |
+| table_optimizing_full_failed_count | Counter | catalog, database, table | Count of failed full optimizing process since ams started |
+| table_optimizing_status_in_idle | Gauge | catalog, database, table | If currently table is in idle status |
+| table_optimizing_status_in_pending | Gauge | catalog, database, table | If currently table is in pending status |
+| table_optimizing_status_in_planning | Gauge | catalog, database, table | If currently table is in planning status |
+| table_optimizing_status_in_executing | Gauge | catalog, database, table | If currently table is in executing status |
+| table_optimizing_status_in_committing | Gauge | catalog, database, table | If currently table is in committing status |
+| table_optimizing_since_last_minor_optimization_mills | Gauge | catalog, database, table | Duration in milliseconds since last successful minor optimization |
+| table_optimizing_since_last_major_optimization_mills | Gauge | catalog, database, table | Duration in milliseconds since last successful major optimization |
+| table_optimizing_since_last_full_optimization_mills | Gauge | catalog, database, table | Duration in milliseconds since last successful full optimization |
+| table_optimizing_since_last_optimization_mills | Gauge | catalog, database, table | Duration in milliseconds since last successful optimization |
+| table_optimizing_lag_duration_mills | Gauge | catalog, database, table | Duration in milliseconds between last self-optimizing snapshot and refreshed snapshot |

Amoro提供grafana的metrics介绍的更多相关文章

  1. Metrics介绍

    Metrics可以为你的代码的运行提供无与伦比的洞察力.作为一款监控指标的度量类库,它提供了很多模块可以为第三方库或者应用提供辅助统计信息, 比如Jetty, Logback, Log4j, Apac ...

  2. .Net Core 2.0+ InfluxDB+Grafana+App Metrics 实现跨平台的实时性能监控

    最近这段时间一直在忙,没时间写博客,负责了一个项目,从前端到后端一直忙,同时还有其他第几个项目的系统架构要处理. 去年就开始关注net core了,只是平时写写demo,没用在项目中,正好这次机会就用 ...

  3. Grafana安装配置介绍

    一.Grafana介绍 Grafana是一个可视化面板(Dashboard),有着非常漂亮的图表和布局展示,功能齐全的度量仪表盘和图形编辑器,支持Graphite.zabbix.InfluxDB.Pr ...

  4. Metrics介绍和Spring的集成(转)

    转自:http://blog.csdn.net/smallnest/article/details/38491507 http://colobu.com/2014/08/08/Metrics-and- ...

  5. AspNet Core 下利用普罗米修斯+Grafana构建Metrics和服务器性能的监控 (无心打造文字不喜勿喷谢谢!)

    概述 Prometheus的主要特点 组件 结构图 适用场景 不适用场景 安装node_exporter,系统性能指数收集(收集系统性能情况) 下载文件 解压并复制node_exporter应用程序到 ...

  6. Office Add-in Model 为 Outlook Mail Add-in 提供的 JavaScript API 介绍

    本文所讨论的 Mailbox API是指在 Mail Add-in 中可调用的 JavaScript API.开发者可以利用这些API 实现 Add-in 和 Outlook 的交互(数据读取与写入) ...

  7. .Net Core 2.*+ InfluxDB+Grafana+App Metrics实时性能监控

    前言 .net core 2.* 实施性能监控 这个工具其实给运维 大大们用起来是更爽的.但是Grafana现在还没有找到中文版. 本文需要了解的相关技术与内容: InfluxDb(分布式时序数据库, ...

  8. .NET 6 全新指标 System.Diagnostics.Metrics 介绍

    前言 工友们, .NET 6 Preview 7 已经在8月10号发布了, 除了众多的功能更新和性能改进之外, 在 preview 7 版本中, 也新增了全新的指标API, System.Diagno ...

  9. Grafana 入门知识介绍

    通过[Configuration]>[Plugins]添加插件 通过[Configuration]>[Data Sources]添加数据源(分析对象) 通过[Server Admin]&g ...

  10. Metrics介绍和Spring的集成

    参考: http://colobu.com/2014/08/08/Metrics-and-Spring-Integration/ https://www.cnblogs.com/yangecnu/p/ ...

随机推荐

  1. UUID和雪花(Snowflake)算法该如何选择?

    UUID 和 Snowflake 都可以生成唯一标识,在分布式系统中可以说是必备利器,那么我们该如何对不同的场景进行不同算法的选择呢,UUID 简单无序十分适合生成 requestID, Snowfl ...

  2. PowerShell一键下载Nuget某个包的所有版本

    一转眼好几年没有写博客了,来博客园冒个泡,最近由于工作需要,内网办公,幸运的是只需要上传一个*.nupkg一个包信息就可以在私有nuget下载到了,下面就用PowerShell编写下载脚本,需要注意的 ...

  3. 获取n级父目录名称

    DirectoryInfo GetPrant(DirectoryInfo path, int level) { DirectoryInfo temp = null; if (level > 1) ...

  4. Acrobat Pro DC 2024.005 像word一样编辑PDF

    随着数字化的推广,PDF文件凭借其强大的优势和稳定性逐渐成为各类文档交流和存储的首选格式.随之而来的是对PDF文件的阅读.编辑.转换.转曲等各种操作需求的不断增长.因此,一款强大的PDF处理软件不仅需 ...

  5. 【Amadeus原创】本地安装gitlab,初始化管理员密码

    注册还是无法登录,最后发现,需要初始化root密码. docker exec进去,然后执行gitLab-rails,修改密码, 然后登录即可. [root@ecs-9684 ~]# docker ex ...

  6. 源启容器平台KubeGien 打造云原生转型的破浪之舰

    ​ 云原生是应用上云的标准路径,也是未来发展大的趋势.如何将业务平滑过渡到云上?怎样应对上云期间的各项挑战呢?中电金信基于金融级数字底座"源启"打造了一款非常稳定可靠.多云异构.安 ...

  7. SpringBoot 2.0.0新版和SpringBoot1.5.2版本中Tomcat配置的差别(坑)

    2018年春SpringBoot 2.0.0 新版本有了很多新的改变,其中Tomcat配置上也有了很大改变1.之前老的版本TomcatEmbeddedServletContainerFactory取的 ...

  8. 解锁4K,Xilinx MPSoC ARM + FPGA高清视频采集与显示方案!

    当下,随着数字化多媒体技术以令人惊叹的速度不断演进,高清视频处理成为众多领域关注的焦点.今天为大家分享4K HDMI 高清视频方案,基于Xilinx UltraScale+ MPSoC XCZU7EV ...

  9. Qt/C++音视频开发64-共享解码线程/重复利用解码/极低CPU占用/画面同步/进度同步

    一.前言 共享解码线程主要是为了降低CPU占用,重复利用解码,毕竟在一个监控系统中,很可能打开了同一个地址,需要在多个不同的窗口中播放,形成多屏渲染的效果,做到真正的完全的画面同步,在主解码线程中切换 ...

  10. Qt音视频开发19-vlc内核各种事件通知

    一.前言 对于使用第三方的sdk库做开发,除了基本的操作函数接口外,还希望通过事件机制拿到消息通知,比如当前播放进度.音量值变化.静音变化.文件长度.播放结束等,有了这些才是完整的播放功能,在vlc中 ...