随机梯度下降 Stochastic gradient descent
梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。
在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了。
梯度下降每次都是更新每个参数,且每个参数更新的形式是一样的,即用前一次该参数的值减掉学习率和目标函数对该参数的偏导数(如果只有1个参数的话,就是导数)
为什么要这样做呢?
通过取不同点处的参数可以看出,这样做恰好可以使原来的目标函数值变低,因此符合我们的要求(即求函数的最小值)。即使当学习速率固定(但不能太大),梯度下降法也是可以收敛到一个局部最小点的,因为梯度值会越来越小,它和固定的学习率相乘后的积也会越来越小。在线性回归问题中我们就可以用梯度下降法来求回归方程中的参数。有时候该方法也称为批量梯度下降法,这里的批量指的是每一时候参数的更新使用到了所有的训练样本。
随机梯度下降 Stochastic gradient descent的更多相关文章
- 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- 梯度下降(Gradient Descent)
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- 梯度下降(Gradient Descent)相关概念
梯度,直观理解: 梯度: 运算的对像是纯量,运算出来的结果会是向量在一个标量场中, 梯度的计算结果会是"在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过 ...
- ML:梯度下降(Gradient Descent)
现在我们有了假设函数和评价假设准确性的方法,现在我们需要确定假设函数中的参数了,这就是梯度下降(gradient descent)的用武之地. 梯度下降算法 不断重复以下步骤,直到收敛(repeat ...
- 多变量线性回归时使用梯度下降(Gradient Descent)求最小值的注意事项
梯度下降是回归问题中求cost function最小值的有效方法,对大数据量的训练集而言,其效果要 好于非迭代的normal equation方法. 在将其用于多变量回归时,有两个问题要注意,否则会导 ...
- 深度学习必备:随机梯度下降(SGD)优化算法及可视化
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...
- 【深度学习】线性回归(Linear Regression)——原理、均方损失、小批量随机梯度下降
1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会 ...
- 优化-最小化损失函数的三种主要方法:梯度下降(BGD)、随机梯度下降(SGD)、mini-batch SGD
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent). 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中, ...
- 机器学习-随机梯度下降(Stochastic gradient descent)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
随机推荐
- MVC3循环添加数据
foreach (var item in orderdetails) { var billdetails = new BillDetail(){BillCode = billoflading.Bill ...
- python之poplib模块下载并解析邮件
# -*- coding: utf-8 -*- #python 27 #xiaodeng #python之poplib模块下载并解析邮件 #https://github.com/michaelliao ...
- LR基础学习_脚本信息函数
Action(){ //脚本信息函数. //lr_whoami:返回Vuser的ID,组名称,场景ID信息./* int id,scid; char *vuser_group; lr ...
- Mysql 监视工具
对于开发人员来说,最头大的莫过于 ,你本地没事,线上 错误日志一堆. 尤其是数据库通信那一层.SqlServer 有 sql profile 用来监视对应的server上的通信日志,参数 命令等信息. ...
- vim设置配色主题
默认主题注释为蓝色,完全看不清.可以在~/.vimrc当中设置colorscheme参数.我在zsh设置中设置了快捷键,直接编辑. colorscheme参数的值可以在 /usr/share/vim/ ...
- mybatis标签之——关联映射
关联关系是面向对象分析.面向对象设计最重要的知识.合理的关联映射将大大简化持久层数据的访问.关联关系大致分为以下三类: 一对一 一对多 多对多 1. 一对一 一对一关系推荐使用唯一主外键关联,即两张表 ...
- (原)Ubuntu16中安装nvidia的显卡驱动
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5638185.html part1 直接在“软件和更新-附加驱动”里面设置 安装完ubuntu16后,显 ...
- 运行shell出错: 没有那个文件或目录
http://blog.163.com/zhangjie_0303/blog/static/99082706201136114548840/
- Python练习笔记——对输入的数字进行加和
请您输入数字,每个数字采用回车结束,当您输入型号*时,则结束数字输入,输出所有数字的总和 def num_sum(): i = 0 while True: get_num = input(" ...
- 《java设计模式》之责任链模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其 ...