题目链接 先打一个sg函数的表,找找规律,发现sg函数可以递归求解 打表代码如下 #include<bits/stdc++.h> using namespace std; typedef long long LL; ; bool vis[N]; int sg[N]; int k; void init() { memset(sg,,sizeof(sg)); memset(vis,false,sizeof(vis)); sg[]=,sg[]=; ;i<=;i++) { memset(vis,…
题目链接: 1661 黑板上的游戏 Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ..., an,游戏的规则是这样的:1. Alice占有先手主动权.2. 每个人可以选取一个大于1的数字擦去,并写上一个更小的数字,数字必须是整数,然后由对方进行下一次操作.3. 如果擦去的数字是 x (x > 1) ,则写上的数字不能比 x/k 小,但是要比 x 小.这里的除法为有理数除法.4. 不可以擦去任何一个数字 1 ,如果当前无法找到一个数字进行操作,则当前方输.假设Alice…
把一对石子堆看出一个子游戏.打出子游戏的sg表找规律.. 这个规律我是一定找不出来的... 对于i,j,如果 (i-1)%pow(2,k+1) < pow(2,k) (j-1)%pow(2,k+1) < pow(2,k) 那么最小的k值就是sg值.   # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vect…
题目链接 先打一个sg函数的表,找找规律,发现sg函数可以递归求解 打表代码如下 #include<bits/stdc++.h> using namespace std; typedef long long LL; ; bool vis[N]; int sg[N]; int k; void init() { memset(sg,,sizeof(sg)); memset(vis,false,sizeof(vis)); sg[]=,sg[]=; ;i<=;i++) { memset(vis,…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4664 题意:一个平面上有n个点(一个凸多边形的顶点),每次可以连接一个平面上的两个点(不能和已经连接的边相交),如果平面上已经出现了一个三角形,则不能在这个平面上继续连接边了. 首先在最优情况下,优先考虑的是一个点不连两条直线,否则就直接输了.因此一个n个点的局面连了一条直线后,分为了两个子游戏,i个点和n-i-2个点,则sg[n]=mex(sg[n]^sg[n-i-2]).然后打表找规律,发现大于…
题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 - 9                                 Stan wins.                         1  ~  9 10 - 18                             Ollie wins.                         …
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质:         1.所有终结点是 必败点 P .(我们以此为基本前提进行推理,换句话说,我们以此为假设)         2.从任何必胜点N 操作,至少有一种方式可以进入必败点 P.         3.无论如何操作,必败点P 都…
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 2478]Farey Sequence(数论--欧拉函数 找规律求前缀和) 求 x/y,gcd(x,y)=1 且 x<y 很像.   而由于这里 x可等于或大于y,于是就求 欧拉函数的前缀和*2+边缘2个点+对角线1个点. 1 #include<cstdio> 2 #include<cst…
题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的博弈,对于每组数据,要先处理出SG函数, 然后使用组合游戏和来解决就ok了,对于求sg函数,很明显,就是求所有的mex,也就是未出现过的最小自然数.最后取异或就ok了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000"…
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆的石子(从0开始标号)的石子个数为n-i-1,这样题目就转化成了每次取一堆石子,并放回两个比这一堆的石子个数少的石堆.这样,我们就可以有序的递推sg函数值了. 即: sg(i)=mex({sg[j]  xor  sg[k]}) 其中j≤i且k≤i #include <cstdio> #define…