深度优先遍历&广度优先遍历】的更多相关文章

学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #include<iostream> using namespace std; //构造一个循环队列来存放广度优先算法的下标 #define ADD 5; using namespace std; class CirQueue { private: int * base; int front,rear,siz…
如果看完本篇博客任有不明白的地方,可以去看一下<大话数据结构>的7.4以及7.5,讲得比较易懂,不过是用C实现 下面内容来自segmentfault 存储结构 要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值.常用的图的存储结构主要有以下二种: 邻接矩阵 邻接表 邻接矩阵 我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法. 我们假设A是这个二维数组…
遍历 图的遍历,所谓遍历,即是对结点的访问.一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: 深度优先遍历 广度优先遍历 深度优先 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点.总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点. 我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所…
1.前置条件 我们提前构建一棵树,类型为 Tree ,其节点类型为 Note.这里我们不进行过多的实现,简单描述下 Note 的结构: class Node{ constructor(data){ this.data = data; this.children = []; // 存放所以子节点,如果是二叉树,可以分为两个属性,left和right分别存储左右子节点 } } class Tree{ constructor(){ this.root = new Node('root'); // 树结…
主要参考资料:数据结构(C语言版)严蔚敏   ,http://blog.chinaunix.net/uid-25324849-id-2182922.html   代码测试通过. package 图的建立与实现; import java.util.*; public class MGraph { final int MAXVEX = 100; final int INFINITY = 65535; int[] vexs = new int[MAXVEX]; //顶点表 int[][] arc =…
1.什么是图的搜索? 指从一个指定顶点可以到达哪些顶点   2.无向完全图和有向完全图 将具有n(n-1)/2条边的无向图称为无向完全图(完全图就是任意两个顶点都存在边). 将具有n(n-1)条边的有向图称为有向完全图. 栗子1: 具有6个顶点的无向图,当有多少条边的时候,能确保是一个连通图? 6个顶点组成的完全图,需要6(6-1)/2=10条,则需要的边数是10+1=11条 栗子2: 要连通具有n个顶点的有向图至少需要n条边   3.顶点的度 对于无向图,顶点的度表示以该顶点作为一个端点的边的…
1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public static TreeNode root; //建立二叉树内部类 class TreeNode{ public Object data; //携带变量 public TreeNode lchild,rchild; //左右孩子 public TreeNode() { data = null; lchild…
二叉树的前序遍历,中序遍历,后序遍历 树的遍历: 先根遍历--访问根结点,按照从左至右顺序先根遍历根结点的每一颗子树. 后根遍历--按照从左至右顺序后根遍历根结点的每一颗子树,访问根结点. 先根:ABEFCDG 后根:EFBCGDA 森林的遍历: 前序遍历--分树前根遍历 中序遍历--分树后根遍历 深度优先遍历:相似于树的前序遍历,首先访问出发点v,并将其标记为已访问过:然后依次从v出发搜索v的每个邻接点w.若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的…
一.二叉树demo var tree = { value: '一', left: { value: '二', left: { value: '四', right: { value: '六' } } }, right: { value: '三', left: { value: '五', left: { value: '七' }, right: { value: '八' } }, } } var traverse = function(node) { if(!node) { throw new Er…
参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath First Search)是图论中两种非常重要的算法,生产上广泛用于拓扑排序,寻路(走迷宫),搜索引擎,爬虫等,也频繁出现在 leetcode,高频面试题中. 本文将会从以下几个方面来讲述深度优先遍历,广度优先遍历,相信大家看了肯定会有收获. 深度优先遍历,广度优先遍历简介 习题演练 DFS,BFS…
广度优先遍历 广度优先遍历是非经常见和普遍的一种图的遍历方法了,除了BFS还有DFS也就是深度优先遍历方法.我在我下一篇博客里面会写. 遍历过程 相信每一个看这篇博客的人,都能看懂邻接链表存储图. 不懂的人.请先学下图的存储方法.在我的之前博客里. 传送门:图表示方法 然后我们如果有一个图例如以下: 节点1->3->NULL 节点2->NULL 节点3->2->4->NULL 节点4->1->2->NULL 这样我们已经知道这是一个什么图了. 如果我们…
前面我们介绍了队列.堆栈.链表,你亲自动手实践了吗?今天我们来到了树的部分,树在数据结构中是非常重要的一部分,树的应用有很多很多,树的种类也有很多很多,今天我们就先来创建一个普通的树.其他各种各样的树将来我将会一一为大家介绍,记得关注我的文章哦~ 首先,树的形状就是类似这个样子的: 它最顶上面的点叫做树的根节点,一棵树也只能有一个根节点,在节点下面可以有多个子节点,子节点的数量,我们这里不做要求,而没有子节点的节点叫做叶子节点. 好,关于树的基本概念就介绍到这里了,话多千遍不如动手做一遍,接下来…
二叉树的创建代码==>C++ 创建和遍历二叉树 深度优先遍历:是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. //深度优先遍历二叉树void depthFirstSearch(Tree root){ stack<Node *> nodeStack; //使用C++的STL标准模板库 nodeStack.push(root); Node *node; while(!nodeStack.empty()){ node = nodeStack.top(); printf(format, n…
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <limits.h> #include "aqueue.h" #define MAX_VALUE INT_MAX #define MAX_NUM 100 typedef char node_type; typedef struct matrix { node_type vertex[M…
图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用邻接矩阵方式存储图.忘见谅. 图的遍历 1)深度优先遍历(Depth_First_Search,DFS) 从图中某个顶点 v 出发,访问此顶点,然后从 v 的未被访问的邻接点出发深度优先遍历图,直至图中所有和 v 有路径相通的顶点都被访问到.--------递归思想 2)广度优先遍历(Breadth…
深度优先与广度优先的定义 首先我们先要知道什么是深度优先什么是广度优先. 深度优先遍历是指从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点的第一个未被访问的邻结点,然后再以此邻结点为顶点,继续找它的下一个顶点进行访问.重复此步骤,直至所有结点都被访问完为止. 广度优先遍历是从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点所有未被访问的邻结点,访问完后再访问这些结点中第一个邻结点的所有结点,重复此方法,直到所有结点都被访问完为止. 代码实现 以下代码针对树的遍历实现,可能根据实际情…
数据结构可以说是编程的内功心法,掌握好数据结构真的非常重要.目前基本上流行的数据结构都是c和c++版本的,我最近在学习python,尝试着用python实现了二叉树的基本操作.写下一篇博文,总结一下,希望能够对其他好伙伴带来一点借鉴价值~~ 温馨提示:学习算法要先懂思想,后学代码.思想学会才是自己的.背下来代码,容易忘. 代码捉襟见肘,欢迎批评指正 ^.^先谈一下二叉树:二叉树是常用的存储数据的方式.除了根节点之外,每个节点都有一个父节点,最多有两个子节点,左孩子和右孩子对于二叉树有如下操作:…
在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程.现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的) 1.广度优先遍历 英文缩写为BFS即Breadth FirstSearch.其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次.对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问). 先往队列中插入左节点,再插右节点,这样出队就是先左节点后右节点了.…
无向图满足约束条件的路径 •[目的]:掌握深度优先遍历算法在求解图路径搜索问题的应用 [内容]:编写一个程序,设计相关算法,从无向图G中找出满足如下条件的所有路径:  (1)给定起点u和终点v.  (2)给定一组必经点,即输出的路径必须包含这些点.  (3)给定一组必避点,即输出的路径必须不能包含这些点. [来源]:<数据结构教程(第五版)>李春葆著,图实验11. 代码: #include<stdio.h> #include<malloc.h> #define MAXV…
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gray; border-width: 2px 0 2px 0;} th{border: 1px solid gray; padding: 4px; background-color: #DDD;} td{border: 1px solid gray; padding: 4px;} tr:nth-chil…
前言: 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次.要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历.中序遍历.后序遍历.具体说明如下: 前序遍历:根节点->左子树->右子树 中序遍历:左子树->根节点->右子树 后序遍历:左子树->右子树->根节点 广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止. 例如对于一下…
深度优先搜索算法(Depth First Search),是搜索算法的一种.是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. 当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点.这一过程一直进行到已发现从源节点可达的所有节点为止. 如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止. 如右图所示的二叉树: A 是第一个访问的,然后顺序是 B.D,然后是 E.接着再是 C.F.G. 那么,怎么样才能来保证这个访问的顺序…
广度优先遍历-BFS 广度优先遍历类似与二叉树的层序遍历算法,它的基本思想是:首先访问起始顶点v,接着由v出发,依次访问v的各个未访问的顶点w1 w2 w3....wn,然后再依次访问w1 w2 w3....wn的所有未被访问的邻接顶点:再从这些访问过的顶点出发,再访问它们所有未被访问过的邻接顶点......依次类推,直到图中的所有点都被访问为止.类似的思想还将应用于Dijkstra单源最短路径算法和Prim最小生成树算法. python实现二叉树的建立以及遍历(递归前序.中序.后序遍历,队栈前…
//深度优先遍历的递归写法 function DFTraversal(node) { var nodes = []; if (node != null) { nodes.push(node); var children = node.children; for (var i = 0; i < children.length; i++){ deepTraversal(children[i]); } } return nodes; } //深度优先遍历的非递归写法 function DFT(node…
import java.util.ArrayDeque; public class BinaryTree { static class TreeNode{ int value; TreeNode left; TreeNode right; public TreeNode(int value){ this.value=value; } } TreeNode root; public BinaryTree(int[] array){ root=makeBinaryTreeByArray(array,…
总结深度优先与广度优先的区别   1.区别 1) 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列. 2) 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次.要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历.中序遍历.后序遍历.具体说明如下: 先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树. 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树. 后序遍历:对任一子树,先遍…
深度优先遍历和广度优先遍历 什么是深度优先和广度优先 其实简单来说 深度优先就是自上而下的遍历搜索 广度优先则是逐层遍历, 如下图所示 1.深度优先 2.广度优先 两者的区别 对于算法来说 无非就是时间换空间 空间换时间 深度优先不需要记住所有的节点, 所以占用空间小, 而广度优先需要先记录所有的节点占用空间大 深度优先有回溯的操作(没有路走了需要回头)所以相对而言时间会长一点 深度优先采用的是堆栈的形式, 即先进后出广度优先则采用的是队列的形式, 即先进先出 具体代码 const data =…
1. 深度优先遍历 深度优先遍历(Depth First Search)的主要思想是: 1.首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点: 2.当没有未访问过的顶点时,则回到上一个顶点,继续试探别的顶点,直至所有的顶点都被访问过. 在此我想用一句话来形容 “不到南墙不回头”. 1.1 无向图的深度优先遍历图解 以下"无向图"为例: 对上无向图进行深度优先遍历,从A开始: 第1步:访问A. 第2步:访问B(A的邻接点). 在第1步访问A之后,接下来应该访问的是…
/* 首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点 为起始点,进行深度优先.广度优先搜索遍历,并输出遍历的结果. */ #include <stdlib.h> #include <iostream> #define MVNum 100 //最大的顶点数 using namespace std; /*——————图的邻接表存储表示——————*/ //边的结点表-在顶点表后面 typedef struct ArcNode { int adjvex; //邻接点…
深度优先遍历 and 广度优先遍历 遍历在前端的应用场景不多,多数是处理DOM节点数或者 深拷贝.下面笔者以深拷贝为例,简单说明一些这两种遍历.…