作者:仲夏夜之星 Date:2020-04-08 来源:物体的三维识别与6D位姿估计:PPF系列论文介绍(三) 文章“A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data” 2018年发表在<sensors>上,是近年来对PPF方法的进一步继承与改进. 1.本文的思路 本文介绍的方法主要分为两个阶段即线下建模与线上匹配,在建模时,通过计算和保存所有可能…
6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints 论文地址: 6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints​arxiv.org 代码链接: github​sites.google.com 简介 作者提出了一种基于RGB-D的深度学习方法6PACK,能够实时的跟踪已知类别物体.通过学习用少量的三维关键点来简洁地表示一个物体,基于…
关键词:OpenCV::solvePnP 文章类型:方法封装.测试 @Author:VShawn(singlex@foxmail.com) @Date:2016-11-27 @Lab: CvLab202@CSU 前言 今天给大家带来的是一篇关于程序功能.性能测试的文章,读过<相机位姿估计1:根据四个特征点估计相机姿态>一文的同学应该会发现,直接使用OpenCV的solvePnP来估计相机位姿,在程序调用上相当麻烦,从一开始的参数设定到最后将计算出的矩阵转化为相机的位姿参数,需要花费近两百行代码…
关键词:相机位姿估计 PNP问题求解 用途:各种位姿估计 文章类型:原理 @Author:VShawn(singlex@foxmail.com) @Date:2016-11-18 @Lab: CvLab202@CSU 今天给大家讲一讲相机位姿估计的基本原理,说实话我本人也没太了解,这里权当做抛砖引玉了.本来我这个博客是写应用型文章的,但虽然不做理论研究,但你要使用别人的方法来解决问题,那么也还是多多少少要对它的原理有点了解的. 关于PNP问题就是指通过世界中的N个特征点与图像成像中的N个像点,计…
最近在做基于图像的室内定位方面的研究,于是使用到了百度最新的室内数据库Image-based Localization (IBL) .由于该数据库给出的数据是每幅图像和其对应相机的内外参数和光心投影方向,所以我需要先求出其6DOF预估姿态.再利用PoseNet网络对其实现基于图像的定位估计.好了,问题就很明确了: (1)根据图像和激光雷达参数的3D点云实现2D-3D的匹配,找到每张图像上的至少四个特征点.即找到至少4个二维像素和3D点云点的对应点. (2)根据这四组对应点和相机内外参数估计相机6…
近来有朋友让老山帮忙识别验证码.在github上查看了下,目前开源社区中主要流行以下几种验证码识别方式: tesseract-ocr模块: 这是HP实验室开发由Google 维护的开源 OCR引擎,内置传统模式识别方法和现代深度神经网络算法 采用深度学习网络 通常是基于CNN网络,通过captcha等验证码生产器自动生产训练集,通常对生成器内置的验证码类型有极高的识别度. 需求中需要识别的验证码来自特定网站 http://fota.redstone.net.cn/,使用通用的验证码识别模块识别准…
三维点云去噪无监督学习:ICCV2019论文分析 Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Hermosilla_Total_Denoising_Unsupervised_Learning_of_3D_Point_Cloud_Cleaning_ICCV_2019_paper.pdf 摘要…
快速人体姿态估计:CVPR2019论文阅读 Fast Human Pose Estimation 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Fast_Human_Pose_Estimation_CVPR_2019_paper.pdf 摘要 现有的人体姿态估计方法通常只考虑如何提高模型的泛化性能,而忽略了显著的效率问题.这导致在实际应用中开发可扩展性和成本效益较差的重型模型.在这项工作中,我们研究了研究不足但…
介绍 OpenCV是开源计算机视觉和机器学习库.包含成千上万优化过的算法.项目地址:http://opencv.org/about.html.官方文档:http://docs.opencv.org/modules/core/doc/intro.html.OpenCV已支持OpenCL OpenGL,也支持iOS和Android.OpenCV的API是C++的,所以在iOS中最佳实践是将用到OpenCV功能写一层Objective-C++封装.这些封装把OpenCV的C++API转化为安全的Obj…
在MATLAB中建立一个脚本show3Dtxt.m文件,编写代码: clear; %%read 3D data fileID= fopen('E:\博士\深度学习与三维重建\代码实现\voxel_grids_64\chair_0890_0_0_1_062_049_042.txt','r'); %txt文件读成三维元胞数组cell形式 A = textscan(fileID,'%d %d %d'); %X,Y,Z数据类型均为 1*1 cell X=A(:,1); Y=A(:,2); Z=A(:,3…
预备知识   图像坐标系:   理想的图像坐标系原点O1和真实的O0有一定的偏差,由此我们建立了等式(1)和(2),可以用矩阵形式(3)表示. 相机坐标系(C)和世界坐标系(W): 通过相机与图像的投影关系,我们得到了等式(4)和等式(5),可以用矩阵形式(6)表示. 我们又知道相机坐标系和世界坐标的关系可以用等式(7)表示: 由等式(3),等式(6)和等式(7)我们可以推导出图像坐标系和世界坐标系的关系: 其中M1称为相机的内参矩阵,包含内参(fx,fy,u0,v0).M2称为相机的外参矩阵,…
在MATLAB中建立一个脚本show3Dmat.m文件,编写代码: clc; clear; %%read 3D data load('E:\博士\深度学习与三维重建\代码实现\3DRecGAN\X_Y_pred_01_0000.mat'); %查看维度 %w=size(X_test); %8*64*64*64 a=X_test(1,:,:,:); %取出第一个样本,1*64*64*64 b=squeeze(a); %去除第一列,64*64*64…
第47章     QR-Decoder-OV5640二维码识别 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/firege 本章参考资料:<STM32F4xx 中文参考手册>.<STM32F4xx规格书>.库帮助文档<stm32f4xx_dsp_stdperiph_lib_um.chm>. 关于开发板配套的OV5640摄像头参数可查阅<ov5640datas…
前言 对前面的东西更新了一下.地方包括: 1.GUI的更新,更友好的用户界面 2.支持用手直接画车辆区域,并且识别出来 3.将proposal.detect.fine-grained classification三个步骤分离 4.在传入Classification Net的时候,不再循环传入分类,而是将检测出的proposal一起截取形成一个image4d,共同传入alexnet.此举是为了加速. Github https://github.com/ChenJoya/Vehicle_Detect…
三维的与二维大同小异,看代码. #include<cstdio> #include<cstring> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 112; char a[MAXN], b[MAXN], c[MAXN]; int f[MAXN][MAXN][MAXN], path[MAXN][…
虹软人脸识别 - faceId及IR活体检测的介绍 前几天虹软推出了 Android ArcFace 2.2版本的SDK,相比于2.1版本,2.2版本中的变化如下: VIDEO模式新增faceId(类似于之前文章中提到的trackId) 新增IR活体检测功能 新增IR.RGB的活体阈值设置 一.faceId介绍 1. 定义 在连续的视频帧中,当一个人脸进入视频画面直到离开,其faceId不变. 2. 应用场景举例 在门禁应用场景下,若一个人长时间停留在画面中,借助faceId的功能,在此人的人脸…
论文地址:https://arxiv.org/abs/1901.02970    github链接:https://github.com/hughw19/NOCS_CVPR2019 类别级6D物体位姿和尺寸估计的标准化物体坐标空间 简介 本文的目标是估计RGB-D图像中从未见过的物体实例的6D位姿和尺寸.与“实例级”6D位姿估计任务相反,作者假设在训练或测试期间没有精确的CAD模型可用.为了处理给定类别中不同的和从未见过的物体实例,作者引入了标准化物体坐标空间(简称NOCS),即同一个类别中的所…
PL-SVO是基于点.线特征的半直接法单目视觉里程计,我们先来介绍一下基于点特征的SVO,因为是在这个基础上提出的. [1]References:      SVO: Fast Semi-Direct Monocular Visual Odometry                                                           ---Christian Forster, Matia Pizzoli, Davide Scaramuzza ∗ 从名字来看,是半…
视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object Detection API物体识别系统对视频内容进行识别,下面将详细介绍整个实现过程. 关键词:物体识别:TensorFlow 1.引言 随着人们工作.生活智能化的不断推进,作为智能化承载者----摄像头,充当起了非常重要的"眼"的作用. 物体识别技术能够进一步实现了"脑"…
谷歌宣布开源其内部使用的 TensorFlow Object Detection API 物体识别系统.本教程针对ubuntu16.04系统,快速搭建环境以及实现视频物体识别系统功能. 本节首先介绍安装环境: 1.首先简单安装tensorflow,一般用户可以直接按照下面的命令进行安装,若不行请转到http://www.cnblogs.com/wmr95/p/7500960.html进行安装. pip install tensorflow   (# For CPU) pip install te…
让我们对卷积神经网络如何工作形成更好直观感受.我们先看下人怎样识别图片,然后再看 CNNs 如何用一个近似的方法来识别图片. 比如说,我们想把下面这张图片识别为金毛巡回犬.   一个需要被识别为金毛巡回犬的图片   人类是怎么做的呢? 一种做法是我们识别狗的特定部位,例如鼻子,眼睛,毛发.我们把图片分成小片,识别小片,然后把这些结合在一起,得到一个狗的概念. 这种情况下,我们可以把图片分成下列组合: 一个鼻子 两只眼睛 金色毛发 如下图所示:   狗的眼睛   狗的鼻子   狗的毛发   再进一…
之前的随笔中,已经实现了python版本调用api接口,之所以使用python是因为python比java要简洁. 但是我发现在使用过程中,chaquopy插件会弹出底部toast显示"unlicensed copy of chaquopy",也就是说使用这款插件是需要license的,如果没有配置license,软件运行5分钟会强制重启,详见https://chaquo.com/chaquopy/license/. chaquopy对开源软件是免费的,闭源是收费的,因此正常使用就需要…
CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 论文链接地址:https://arxiv.org/pdf/1812.02781.pdf 摘要内容: 本文提供了基于端到端单目3D目标检测和度量形状检索的深度学习方法.为了在3D中提升2D检测,定位,以及缩放,提出了一种新的loss函数.不同于各自独立的优化这些数量,3D示例允许适当的度量box…
单目摄像头检测6D姿态 CVPR2019: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 论文链接: https://arxiv.org/pdf/1812.02781.pdf 摘要 本文提出了一种端到端单目三维目标检测和度量形状检索的深度学习方法,将二维检测.定位和尺度估计提升到三维空间,提出了一种新的损失公式.三维实例化不需要单独优化这些数量,而是允许正确测量框的度量偏差.实验表明,本文提出的稀疏二…
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义  至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中"有趣"的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是"可重复性":同一…
机器人视觉中有一项重要人物就是从场景中提取物体的位置,姿态.图像处理算法借助Deep Learning 的东风已经在图像的物体标记领域耍的飞起了.而从三维场景中提取物体还有待研究.目前已有的思路是先提取关键点,再使用各种局部特征描述子对关键点进行描述,最后与待检测物体进行比对,得到点-点的匹配.个别文章在之后还采取了ICP对匹配结果进行优化. 对于缺乏表面纹理信息,或局部曲率变化很小,或点云本身就非常稀疏的物体,采用局部特征描述子很难有效的提取到匹配对.所以就有了所谓基于Point Pair 的…
摘要: 对于人物识别技术来说,动作和人体测量统计学对于光学差异并不敏感,甚至对于眼镜,头发,帽子的描述相当粗糙,现在的以步态为基础的识别技术都是基于对细节的精确描述和对步态周期的精确测量.这种方法需要运动主角在简单背景下反复的重复一个单一动作,并且需要昂贵的动作捕捉系统或者二维的视频系统,以便研究人员可以对运动物体进行分段和跟踪.现有的设备限制了人体测量统计学在实际场景中的运用,因为实际场景中的动作存在不同程度的复杂性.我们发展了一种新的人物识别方法,这种方法以动作和人体测量统计学为基础,并且所…
作者:Tom Hardy Date:2020-04-15 来源:CVPR2020文章汇总 | 点云处理.三维重建.姿态估计.SLAM.3D数据集等(12篇) 1.PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF PoseEstimation 文章链接:https://arxiv.org/abs/1911.04231 代码链接:https://github.com/ethnhe/PVN3D 在这项工作中,论文提出了一种新的数…
CVPR2020:利用图像投票增强点云中的三维目标检测(ImVoteNet) ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Qi_ImVoteNet_Boosting_3D_Object_Detection_in_Point_Clouds_With_Image_CVPR_202…