caffe数据集——LMDB】的更多相关文章

LMDB介紹 Caffe使用LMDB來存放訓練/測試用的數據集,以及使用網絡提取出的feature(為了方便,以下還是統稱數據集).數據集的結構很簡單,就是大量的矩陣/向量數據平鋪開來.數據之間沒有什麼關聯,數據內沒有復雜的對象結構,就是向量和矩陣.既然數據並不復雜,Caffe就選擇了LMDB這個簡單的數據庫來存放數據. LMDB的全稱是Lightning Memory-Mapped Database,閃電般的內存映射數據庫.它文件結構簡單,一個文件夾,裡面一個數據文件,一個鎖文件.數據隨意複製…
本文主要介绍如何在caffe框架下生成LMDB.其中包含了两个任务的LMDB生成方法,一种是分类,另外一种是检测. 分类任务 第一步  生成train.txt和test.txt文件文件 对于一个监督学习而言,通常具有训练集(train_data文件夹)和测试集(test_data文件夹),如下图所示 而多分类问题,train_data文件夹的子目录下,有会各个类别的文件夹,里面放着归属同一类的图片数据.(test_data文件夹同理) 因此,我们需要先生成train.txt和test.txt,以…
利用caffe生成 lmdb 格式的文件,并对网络进行FineTuning 数据的组织格式为: 首先,所需要的脚本指令路径为: /home/wangxiao/Downloads/caffe-master/examples/imagenet/ 其中,生成lmdb的文件为: create_imagenet.sh 接下来的主要任务就是修改自己的data的存放路径了. #!/usr/bin/env sh # Create the imagenet lmdb inputs # N.B. set the p…
caffe中可以采取lmdb健值数据库的方式向网络中输入数据. 所以操作lmdb就围绕"键-值"的方式访问数据库就好了. Write 我们可以采用cv2来读入自己的图像数据,采用datum格式来存储数据. Datum is a Google Protobuf Message class used to store data and optionally a label. A Datum can be thought of a as a matrix with three dimensi…
Lmdb生成的过程简述 1.整理并约束尺寸,文件夹.图片放在不同的文件夹之下,注意图片的size需要规约到统一的格式,不然计算均值文件的时候会报错. 2.将内容生成列表放入txt文件中.两个txt文件,train训练文件.val测试文件. Train里面就是你的分类了. 3.形成LMDB数据集. 4.形成训练集的均值文件. 整理并规约.一般情况下整理用数据增强的功能,一般用opencv,这块笔者还没有探究,所以先不说. 一.图片列表生成 图片内容变成列表.这个办法很多,很多软件都可以用,pyth…
链接 LMDB is the database of choice when using Caffe with large datasets. This is a tutorial of how to create an LMDB database from Python. First, let’s look at the pros and cons of using LMDB over HDF5. Reasons to use HDF5: Simple format to read/write…
问题描述: lmdb文件支持数据+标签的形式,但是却只能写入一个标签,引入多标签的解决方法有很多,这儿详细说一下我的办法:制作多个data数据,分别加入一个标签.我的方法只适用于标签数量较少的情况,标签数量比较多的话建议修改源码支持.下面介绍详细步骤.以下均以两个标签作为介绍. 生成两个含单标签的list: img1 0 img2 0 img3 1 img4 1 img1 10 img2 11 img3 10 img4 11 按照同一顺序做shuffle处理,caffe训练数据shuffle处理…
SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如何训练4 使用SSD如何测试 1 数据集的标注 数据的标注使用BBox-Label-Tool工具,该工具使用python实现,使用简单方便.修改后的工具支持多label的标签标注.该工具生成的标签格式是:object_numberclassName x1min y1min x1max y1maxcl…
1 前言 Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架.关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源.这里我主要结合我所在的行业,说下如何对跑通具有多通道多格式的遥感数据. 2 数据准备 Caffe封装的非常好,要想将我们的数据运用于Caffe上,我们唯一要做的工作就是准备好Caffe支持的数据输入格式(leveldb/lmdb). Caffe解决方案下有一个工程convert_imageset为我们提供了接口,主要是将图像文件转…
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可能要超过1周的时间. 不同的网络结构,可能会有不同图片尺寸的需求,所以训练之前需要了解一下,在生成LMDB环节就直接符合上模型的数据要求. 如果你自己DIY了框架,那么不知道如何检验框架与通用框架比较,是否优质,可以去benchmarks网站,跟别人的PK一下:http://human-pose.m…
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/54141697 本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了… 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可能要超过1周的时间. 不同的网络结构,可能会有不同图片尺寸的需求,所以训练之前需要了…
使用py-faster-rcnn训练VOC2007数据集时遇到如下问题: 1. KeyError: 'chair' File "/home/sai/py-faster-rcnn/tools/../lib/datasets/pascal_voc.py", line 217, in _load_pascal_annotationcls = self._class_to_ind[obj.find('name').text.lower().strip()]KeyError: 'chair' 解…
PyTorch使用LMDB数据库加速文件读取 原始文档:https://www.yuque.com/lart/ugkv9f/hbnym1 对于数据库的了解较少,文章中大部分的介绍主要来自于各种博客和LMDB的文档,但是文档中的介绍,默认是已经了解了数据库的许多知识,这导致目前只能囫囵吞枣,待之后仔细了解后再重新补充内容. 背景介绍 文章https://blog.csdn.net/jyl1999xxxx/article/details/53942824中介绍了使用LMDB的原因: Caffe使用L…
LMDB is the database of choice when using Caffe with large datasets. This is a tutorial of how to create an LMDB database from Python. First, let’s look at the pros and cons of using LMDB over HDF5. Reasons to use HDF5: Simple format to read/write. R…
http://deepdish.io/2015/04/28/creating-lmdb-in-python/ https://lmdb.readthedocs.org/en/release/ https://github.com/BVLC/caffe/issues/1698#issuecomment-70211045 lmdb的安装:https://lmdb.readthedocs.org/en/release/ lmdb的一些封装函数:http://nbviewer.jupyter.org/g…
1.准备样本 要训练自己的样本,首先需要把样本准备好,需要准备的是训练集和测试集,caffe支持直接使用图片,当然把样本转换为leveldb或lmdb格式的话训练起来会更快一点.这里我先偷个懒,直接使用图片吧 [尴尬.jpg] 训练集和测试集是一样的,不过样本不要重叠.首先我把训练集的图片都放在一个目录,然后shift+右键选择该目录,打开cmd,使用命令 dir /s/b >train.txt ,这样就在该目录下生成了一份所有图片的列表,效果如下 然后使用查找替换功能把它修改成下面这个样子,后…
目录 说明 分析 全局设定文件:$TF_ROOT/WORKSPACE 外部依赖项入口:tensorflow/workspace.bzl 看看有多少package? 本来是想理解一下TF源码编译过程的,后来发现功力和时间有限,就只分析了两个入口级文件$TF_ROOT/WORKSPACE和$TF_ROOT/tensorflow/workspace.bzl 说明 只考虑Bazel,不考虑CMake. 只考虑WORKSPACE,BUILD,*.bzl,不考虑configure和configure.py…
物体检测算法 SSD 的训练和测试 GitHub:https://github.com/stoneyang/caffe_ssd Paper: https://arxiv.org/abs/1512.02325 1. 安装 caffe_SSD: git clone https://github.com/weiliu89/caffe.git cd caffe git checkout ssd 2. 编译该 caffe 文件,在主目录下: # Modify Makefile.config accordi…
DeepLearning to digit recongnizer in kaggle 近期在看deeplearning,于是就找了kaggle上字符识别进行练习.这里我主要用两种工具箱进行求解.并比对两者的结果. 两种工具箱各自是DeepLearningToolbox和caffe. DeeplearningToolbox源代码解析见:http://blog.csdn.net/lu597203933/article/details/46576017 Caffe学习见:http://caffe.b…
0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测大概只能实现一点几倍的加速(按每秒处理的总图片数计算),不管用多少张卡.因为卡越多,数据传输的开销就越大,副作用就越大. 为了提高GPU服务器的资源利用率,尝试了一些加速的手段. 基于Pytorch1.6.0版本实现,官方支持amp功能,不再需要外部apex库: 此外比较重要的库是Dali. 梳理了…
转自网站: http://blog.csdn.net/muyiyushan/article/details/70578077 1.准备数据 使用dog/cat数据集,在训练项目根目录下分别建立train和val文件夹,作为训练数据和验证数据的保存位置.train和val文件夹下各有两个文件夹:dogs和cats,分别保存dog和cat的图片.dog和cat分别有1000张训练图像和400张测试图像. 写一个python脚本文件,遍历train和val两个文件夹,分别生成train.txt和val…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
前期准备: 文件夹train:此文件夹中按类别分好子文件夹,各子文件夹里存放相应图片 文件夹test:同train,有多少类就有多少个子文件夹 trainlabels.txt : 存的是训练集的标签 testlables.txt: 存的是测试集的标签 (特别注意:文件的路径以及文件名要对应) 第一步 生成train文件夹和test文件夹以及标签文件.本文用的是matlab对数据集进行读取,然后输出图片到相应文件夹中,并且生成标签文件.此处给出matlab的代码,请自行分析. %% 实现图片的输出…
caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://blog.csdn.net/joshua_1988/article/details/45048871 http://blog.csdn.net/dongb5lz/article/details/45171187 http://m.blog.csdn.net/blog/thesby/43535619 依照…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
在win10机子上装了caffe,感谢大神们的帖子,要入坑caffe-windows的朋友们看这里,还有这里,安装下来基本没什么问题. 好了,本博文写一下使用caffe测试mnist数据集的步骤. 1. 下载mnist数据集. 不太看得懂get_mnist.ps1文件,并且运行无效,所以选择直接从mnist官网下载数据集.下载后解压,从解压后的文件夹提取出四个文件,放在caffe根目录下<caffe-root>\data\mnist下,例如E:\caffe-windows\data\mnist…
一.任务 现在用caffe做目标检测一般需要lmdb格式的数据,而目标检测的数据和目标分类的lmdb格式的制作难度不同.就目标检测来说,例如准备SSD需要的数据,一般需要以下几步: 1.准备图片并标注groundtruth        2.将图像和txt格式的gt转为VOC格式数据        3.将VOC格式数据转为lmdb格式数据 本文的重点在第2.3步,第一步标注任务用小代码实现即可.网络上大家制作数据格式一般是仿VOC0712的,建立各种目录,很麻烦还容易出错,现我整理了一下代码,只…
Ubuntu14.04+caffe+cuda 环境搭建以及MNIST数据集的训练与测试 一.ubuntu14.04的安装: ubuntu的安装是一件十分简单的事情,这里给出一个参考教程: http://jingyan.baidu.com/article/76a7e409bea83efc3b6e1507.html 二.cuda的安装: 1.首先下载nvidia cuda的仓库安装包(我的是ubuntu 14.04 64位,所以下载的是ubuntu14.04的安装包,如果你是32位的可以参看具体的地…
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…