当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #include<iostream> #include<cstdio> using namespace std; const long long N=100005; long long c[10],T,d[10],s,f[N],ans; long long read() { long long…
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ------------------------------------------------------------------------ #include<cstdio> #include<algorithm> #include<cstring> using namespace std; typedef long long ll; const int maxn = 1…