spark内存概述】的更多相关文章

转自:https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/spark%E5%86%85%E5%AD%98%E6%A6%82%E8%BF%B0.md 1.5以前 spark进程是以JVM进程运行的,可以通过-Xmx和-Xms配置堆栈大小,它是如何使用堆栈呢?下面是spark内存分配图. storage memory spark默认JVM堆为512MB,为了避免OOM错误,只使用90%.通过spark.storage.sa…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 Spark Streaming第3章 架构与抽象第4章 Spark Streaming 解析4.1 初始化 StreamingContext4.2 什么是 DStreams4.3 DStream 的输入4.3.1 基本数据源4.3.2 高级数据源4.4 DStream 的转换4.4.1 无状态转化操作…
摘抄自:https://www.ibm.com/developerworks/cn/analytics/library/ba-cn-apache-spark-memory-management/index.html 一.概述 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文…
一.概述 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Dr…
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式2.1.2 GraphX 存储模式2.2 vertices.edges 以及 triplets2.2.1 vertices2.2.2 edges2.2.3 triplets2.3 图的构建2.3.1 构建图的方法2.3.2 构建图的过程2.4 计算模式2.4.1 BSP 计算模式2.4.2 图操作一…
MemoryManager内存管理器 内存管理器可以说是spark内核中最重要的基础模块之一,shuffle时的排序,rdd缓存,展开内存,广播变量,Task运行结果的存储等等,凡是需要使用内存的地方都需要向内存管理器定额申请.我认为内存管理器的主要作用是为了尽可能减小内存溢出的同时提高内存利用率.旧版本的spark的内存管理是静态内存管理器StaticMemoryManager,而新版本(应该是从1.6之后吧,记不清了)则改成了统一内存管理器UnifiedMemoryManager,同一内存管…
概述 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driv…
第1章 Spark SQL概述 1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用. Hive是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢. 所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快! 1)易整合…
Spark内存管理机制 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver 和 Executor 两种 JVM 进程,前者为主控进程,负责创建 Spark 上下文,提交 Spark 作业(Job),并将作业转化为计算任务(Task),在各个 Executor 进程间协调任务的调度,后者负责在…
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver…
[Spark-core学习之八] SparkShuffle & Spark内存管理环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.SparkShuffle1. SparkShuffle概念reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,v…
Spark内存管理之钨丝计划 1. 钨丝计划的产生的原因 2. 钨丝计划内幕详解  一:“钨丝计划”产生的本质原因 1, Spark作为一个一体化多元化的(大)数据处理通用平台,性能一直是其根本性的追求之一,Spark基于内存迭代(部分基于磁盘迭代)的模型极大的满足了人们对分布式系统处理性能的渴望,但是有Spark是采用Scala+ Java语言编写的所以运行在了JVM平台,当然JVM是一个绝对伟大的平台,因为JVM让整个离散的主机融为了一体(网络即OS),但是JVM的死穴GC反过来限制了Spa…
很多人一个误区,Spark SQL重点不是在SQL啊,而是在结构化数据处理! Spark SQL结构化数据处理 概要: 01 Spark SQL概述 02 Spark SQL基本原理 03 Spark SQL编程 04 分布式SQL引擎 05 用户自定义函数 06 性能调优   Spark SQL概述 Spark SQL是什么? Spark SQL is a Spark module for structured data processing 特别注意:.3.0 及后续版本中,SchemaRD…
本篇文章主要剖析Spark的内存管理体系. 在上篇文章 spark 源码分析之十四 -- broadcast 是如何实现的?中对存储相关的内容没有做过多的剖析,下面计划先剖析Spark的内存机制,进而进入内存存储,最后再剖析磁盘存储.本篇文章主要剖析内存管理机制. 整体介绍 Spark内存管理相关类都在 spark core 模块的 org.apache.spark.memory 包下. 文档对这个包的解释和说明如下: This package implements Spark's memory…
上篇spark 源码分析之十五 -- Spark内存管理剖析 讲解了Spark的内存管理机制,主要是MemoryManager的内容.跟Spark的内存管理机制最密切相关的就是内存存储,本篇文章主要介绍Spark内存存储. 总述 跟内存存储的相关类的关系如下: MemoryStore是负责内存存储的类,其依赖于BlockManager.SerializerManager.BlockInfoManager.MemoryManager. BlockManager是BlockEvictionHandl…
存储级别简介 Spark中RDD提供了多种存储级别,除去使用内存,磁盘等,还有一种是OFF_HEAP,称之为 使用JVM堆外内存 https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/storage/StorageLevel.scala 使用OFF_HEAP的优点:在内存有限时,可以减少频繁GC及不必要的内存消耗(减少内存的使用),提升程序性能. Spark内存管理根据版本划分为两…
title: [CUDA 基础]5.1 CUDA共享内存概述 categories: - CUDA - Freshman tags: - CUDA共享内存模型 - CUDA共享内存分配 - CUDA共享内存访问 - CUDA共享内存配置 - CUDA共享内存同步 toc: true date: 2018-06-01 17:46:23 Abstract: 本文为CUDA内存的概述,介绍共享内存的模型,分配,访问,配置,同步等内容 Keywords: 模型,分配,访问,配置,同步 开篇废话 这里首先…
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver…
Spark 内存管理 Spark 执行应用程序时, 会启动 Driver 和 Executor 两种 JVM 进程 Driver 负责创建 SparkContext 上下文, 提交任务, task的分发等. Executor 负责 task 的计算任务, 并将结果返回给 Driver, 同时需要为需要持久化的 RDD 提供储存. Driver 端的内存管理比较简单, 这里说的 Spark内存管理针对 Executor 端的内存管理. Spark 内存管理分为 静态内存管理 和 统一内存管理, S…
1. 堆内和堆外内存规划 1.1 堆内内存 堆内内存的大小,由 Spark 应用程序启动时的 –executor-memory 或 spark.executor.memory 参数配置.Executor 内运行的并发任务共享 JVM 堆内内存,这些任务在缓存 RDD 数据和广播(Broadcast)数据时占用的内存被规划为存储(Storage)内存,而这些任务在执行 Shuffle 时占用的内存被规划为执行(Execution)内存,剩余的部分不做特殊规划,那些 Spark 内部的对象实例,或者…
Spark:快速的通用的分布式计算框架 概述和特点: 1) Speed,(开发和执行)速度快.基于内存的计算:DAG(有向无环图)的计算引擎:基于线程模型: 2)Easy of use,易用 . 多语言(Java,python,scala,R); 多种计算API可调用:可在交互式模式下运行: 3)Generality  通用.可以一站式解决多个不同场景的应用业务 Spark Streaming :用来做流处理 MLlib : 用于机器学习 GraphX:用来做图形计算的 4) Runs Ever…
提交Spark程序的机器一般一定和Spark集群在同样的网络环境中(Driver频繁和Executors通信),且其配置和普通的Worker一致 1. Driver: 具有main方法的,初始化 SparkContext 的程序.Driver运行在提交Spark任务的机器上. Driver 部分的代码: SparkConf + SparkContext SparkContext: 创建DAGScheduler, TaskScheduler, SchedulerBackend, 在实例化的过程中R…
我们知道,spark中每个分片都代表着一部分数据,那么分片数量如何被确认的呢? 首先我们使用最常见的HDFS+Spark,sparkDeploy的方式来讨论,spark读取HDFS数据使用的是sparkcontext.textfile(Path, minPartitions): def textFile( path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = withScope { assertNotSto…
在Spark-1.6.0中,引入了一个新的参数spark.memory.userLegacyMode(默认值为false),表示不使用Spark-1.6.0之前的内存管理机制,而是使用1.6.0中引入的动态内存分配这一概念. 从SparkEnv.scala的源码中可以看到,该参数设置为true或false,主要影响到构造memoryManager的类的不同: val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyM…
问题描述 在测试spark on yarn时,发现一些内存分配上的问题,具体如下. 在$SPARK_HOME/conf/spark-env.sh中配置如下参数: SPARK_EXECUTOR_INSTANCES=4 在yarn集群中启动的executor进程数 SPARK_EXECUTOR_MEMORY=2G 为每个executor进程分配的内存大小 SPARK_DRIVER_MEMORY=1G 为spark-driver进程分配的内存大小 执行$SPARK_HOME/bin/spark-sql…
本文基于Spark 1.6.0之后的版本 Spark 1.6.0引入了对堆外内存的管理并对内存管理模型进行了改进,SPARK-11389. 从物理上,分为堆内内存和堆外内存:从逻辑上分为execution内存和storage内存. Execution内存主要是用来满足task执行过程中某些算子对内存的需求,例如shuffle过程中map端产生的中间结果需要缓存在内存中. Storage内存主要用来存储RDD持久化的数据或者广播变量. Off-heap内存 通过下面的代码片段(spark2.1版本…
在spark里面,内存管理有两块组成,一部分是JVM的堆内内存(on-heap memory),这部分内存是通过spark dirver参数executor-memory以及spark.executor.memory来进行指定: 另外一部分是堆外内存(off-heap memory),堆外内存默认是关闭,需要通过spark.memory.offheap.enabled以及spark.memory.offheap.size来进行开启以及设置大小:堆外内存在可以实现回收迅速(GC是周期性回收),同时…
在spark里面,内存管理有两块组成,一部分是JVM的堆内内存(on-heap memory),这部分内存是通过spark dirver参数executor-memory以及spark.executor.memory来进行指定: 另外一部分是堆外内存(off-heap memory),堆外内存默认是关闭,需要通过spark.memory.offheap.enabled以及spark.memory.offheap.size来进行开启以及设置大小:堆外内存在可以实现回收迅速(GC是周期性回收),同时…
前言 下面的分析基于对spark2.1.0版本的分析,对于1.x的版本可以有区别. 内存配置 key 默认 解释 spark.memory.fraction 0.6 spark可以直接使用的内存大小系数 spark.memory.storageFraction 0.5 spark存储可以直接使用的内存大小系数 spark.memory.offHeap.enabled false 是否开启spark使用jvm内存之外的内存 spark.memory.offHeap.size 0 jvm之外,spa…