目录 一维Full卷积 一维Same卷积 一维Valid卷积 三种卷积类型的关系 具备深度的一维卷积 具备深度的张量与多个卷积核的卷积 参考资料 一维卷积通常有三种类型:full卷积.same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程 一维Full卷积 Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下: 将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的ful…
目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减少了网络参数. ③减少了计算量 在<Rethinking the Inception Architecture for Computer Vision>中作者还想把小卷积核继续拆解,从而进一步增强前面的优势 返回目录 举例 一个3*3的卷积可以拆解为:一个3*1的卷积再串联一个1*3的卷积,实验证…
目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深度学习面试题26:GoogLeNet(Inception V2)>中对前两个Inception版本做了介绍,下面主要阐述V3版本的创新点 使用非对称卷积分解大filters InceptionV3中在网络较深的位置使用了非对称卷积,他的好处是在不降低模型效果的前提下,缩减模型的参数规模,在<深度学…
目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是Hinton,于2012年发表论文. AlexNet有60 million个参数和65000个 神经元,五层卷积,三层全连接网络,最终的输出层是1000通道的softmax.AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%…
目录 二维Full卷积 二维Same卷积 二维Valid卷积 三种卷积类型的关系 具备深度的二维卷积 具备深度的张量与多个卷积核的卷积 参考资料 二维卷积的原理和一维卷积类似,也有full卷积.same卷积和valid卷积. 举例:3*3的二维张量x和2*2的二维张量K进行卷积 二维Full卷积 Full卷积的计算过程是:K沿着x从左到右,从上到下移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下: Full卷积的过程记为Cfull=x★K: 返回目录 二维Same卷积 假设卷积核…
目录 举例 单个张量与多个卷积核的分离卷积 参考资料 举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_height, in_width, in_channels] input =tf.reshape(tf.constant([2,5,3,3,8,2,6,1,1,2,5,4,7,9,2,3,-1,3], tf.float32),[1,3,3,2]) # [filter_height, filter_wid…
目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于conv2d在每一深度上卷积,然后求和,depthwise_conv2d没有求和这一步,对应代码为: import tensorflow as tf # [batch, in_height, in_width, in_channels] input =tf.reshape( tf.constant([…
目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小.再通俗点的解释是,特征图上的一个点对应输入图上的区域,如下图所示: 返回目录 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 像LeNet.AlexNet网络,都是用了较大的卷积核,目的是提取出输入图像更大邻域范围的信息,一般是卷积与池化操…
目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separable_conv2d( inputs, depth(64), [7, 7], depth_multiplier=depthwise_multiplier, stride=2, padding='SAME', weights_initializer=trunc_normal(1.0), scope=en…
目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于2015年提出,论文是<Batch Normalization_ Accelerating Deep Network Training by Reducing Internal Covariate Shift>,这是一个深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层网络模型更加容易…
目录 举例 参考资料 网中网结构通过多个分支的运算(卷积或池化),将分支上的运算结果在深度上连接 举例 一个3*3*2的张量, 与3个1*1*2的卷积核分别same卷积,步长=1, 与2个2*2*2的卷积核分别same卷积,步长=1, 与1个3*3*2的掩码最大值same池化,步长=1, 将得到的这3个结果在深度方向上拼接 GoogLeNet是基于类似网中网模块设计的网络结构,在GoogLeNet中该模块称为 Inception Module,多个Inception Module 模块可以组合成…
目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络最终的性能…
目录 卷积层的dropout 全连接层的dropout Dropout的反向传播 Dropout的反向传播举例 参考资料 在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来的1/keep_prob倍,以概率1-keep_prob变为0.也就是在每一轮的训练中让一些神经元随机失活,从而让每一个神经元都有机会得到更高效的学习,会让网络更加健壮,减小过拟合. 在预测过程中,不再随机失活,也不在扩大神经元的输出. 卷积层的dropout 举例:以一个2*4的二维张量为例,参数…
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起,CNN的最基本的架构就定下来了:卷积层.池化层.全连接层.如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(-5表示具有5个层),和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLu. 神经网络的卷积.池化.拉伸 前面讲了卷积和池化,卷积层可以从图像中提取特…
目录 Same最大值池化 多深度的same池化 Same平均值池化 Valid池化 参考资料 池化(Pooling)操作与卷积类似,取输入张量的每个位置的矩形领域内的最大值或平均值作为该位置的输出. 池化操作分为same池化和valid池化,同时还可以设置移动的步长 Same最大值池化 举例:4行4列的张量x和2行3列的掩码进行步长为1的same最大值池化,其过程如下 池化的结果是 返回目录 多深度的same池化 多深度的same池化是在每个深度上分别进行池化操作. 举例:3行3列2深度的张量和…
目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二名,这两类模型结构的共同特点是层次更深了.VGG继承了LeNet以及AlexNet的一些框架结构,而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VG…
目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只有一个结点. 假设y为样本标签,_y为全连接网络的输出层的值,那么,这个对数损失定义为 PS:这个是可以用极大似然估计推导出来的 举例: y=0,_y=0.8,那此时的sigmod交叉熵为1.171 import numpy as np def sigmod(x): return 1/(1+np.e…
目录 为什么要用激活函数 sigmod tanh ReLU LeakyReLU ReLU6 参考资料 为什么要用激活函数 在神经网络中,如果不对上一层结点的输出做非线性转换的话,再深的网络也是线性模型,只能把输入线性组合再输出(如下图),不能学习到复杂的映射关系,因此需要使用激活函数这个非线性函数做转换. 返回目录 sigmod Sigmod激活函数和导函数分别为 对应的图像分别为:    对应代码为:   Sigmod(x)的缺点: ①输出范围在0~1之间,均值为0.5,需要做数据偏移,不方便…
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代次数的增加,学习率应该越来越小,因为迭代次数增加后,得到的解应该比较靠近最优解,所以要缩小步长η,那么有什么公式吗?比如:,但是这样做后,所有参数更新时仍都采用同一个学习率,即学习率不能适应所有的参数更新. 解决方案是:给不同的参数不同的学习率 Adagrad法 假设N元函数f(x),针对一个自变量…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…
from:http://www.freebuf.com/articles/system/182566.html 0×01 前言 目前的恶意样本检测方法可以分为两大类:静态检测和动态检测.静态检测是指并不实际运行样本,而是直接根据二进制样本或相应的反汇编代码进行分析,此类方法容易受到变形.加壳.隐藏等方式的干扰.动态检测是指将样本在沙箱等环境中运行,根据样本对操作系统的资源调度情况进行分析.现有的动态行为检测都是基于规则对行为进行打分,分值的高低代表恶意程度的高低,但是无法给出类别定义. 本文采用…
目录 产生背景 工作原理 参考资料 产生背景 假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为: 假设该样本y=[0, 1, 0],那损失loss: 按softmax交叉熵优化时,针对这个样本而言,会让0.721越来越接近于1,因为这样会减少loss,但是这有可能造成过拟合.可以这样理解,如果0.721已经接近于1了,那么网络会对该样本十分“关注”,也就是过拟合.我们可以通过标签平滑的方式解决.…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习   转载:https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80972658 1.梯度下降算法的正确步骤,(正确步骤dcaeb)(梯度下降法其实是根据函数的梯度来确定函数的极小值),这里的问题与其说是梯度下降算法的步骤不如说类似图图像分类训练的整个流程:网络初始化-输入to输出-期望输…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…
github上热门深度学习项目 项目名 Stars 描述 TensorFlow 29622 使用数据流图进行可扩展机器学习的计算. Caffe 11799 Caffe:深度学习的快速开放框架. [Neural Style](https://github.com/jcjohnson/neural-style) 10148 火炬实现神经风格算法. Deep Dream 9042 深梦. Keras 7502 适用于Python的深度学习库.Convnets,递归神经网络等等.在Theano和Tens…
模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)…