Cross-entropy Method(简称CEM)虽然是一种基于交叉熵的算法,但并不是我们熟知的监督学习中的交叉熵方法,与其说它是一种基于交叉熵的算法,倒不如说是一种基于蒙特卡洛和进化策略的算法.CEM算法不仅可以用作评估,也可以作为一种有效的优化算法,与进化算法(EAs)类似CEM是一种完全免梯度(gradients free)的算法. 这里引用维基百科上对Cross-entropy Method的解释[1]: The cross-entropy (CE) method is a Mont…
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2019-07-15 22:23:02 Paper: https://arxiv.org/pdf/1801.01290.pdf or Updated Version: https://arxiv.org/pdf/1812.05905.pdf Project: https://sites.google.c…
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We have pages for other topics: awesome-rnn, awesome-deep-vision, awesome-random-forest Maintainers: Hyunsoo Kim, Jiwon Kim We are looking for more contri…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing-fps-games-with-deep-reinforcement-learning/ When I wrote up 'Asynchronous methods for deep learning' last month, I made a throwaway remark that after…
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. The papers are organized based on manually-defined bookmarks. They are sorted by time to see the recent papers first. Any suggestions and pull requests…
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playing Out Run, session 201609171218_175epsNo time limit, no traffic, 2X time lapse Above is the built deep Q-network (DQN) agent playing Out Run, trained…
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Learning. The goal of this work is to build a simulation platform that can insert the Deep Reinforcement Learning algorithms as a robot motion planning…
Deep Learning in a Nutshell: Reinforcement Learning   Share: Posted on September 8, 2016by Tim Dettmers No CommentsTagged Deep Learning, Deep Neural Networks, Machine Learning,Reinforcement Learning This post is Part 4 of the Deep Learning in a Nutsh…
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from Pixels May 31, 2016 This is a long overdue blog post on Reinforcement Learning (RL). RL is hot! You may have noticed that computers can now automatica…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal…
摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些模型利用了用户的反馈,如用户返回的频率.(user feedback other than click / no click labels (e.g., how frequentuser returns) ); 三:会给用户推送一些内容类似的新闻,用户看多了会无聊. 为了解决上述问题,我们提出了DQ…
Towards end-to-end reinforcement learning of dialogue agents for information access KB-InfoBot 与知识库交互的多轮对话模型,放弃符号式的查询语句,转而在知识库上使用soft后验分布来寻找概率最大的信息. 知识库 知识库的数据是常见的(实体关系 head, relation,tail)三元组,本文将其做了一步转化,将三元组数据库转化成表格形式:行为实体(head)的属性(tail),列为关系(relati…
这是一篇迟来很久的关于增强学习(Reinforcement Learning, RL)博文.增强学习最近非常火!你一定有所了解,现在的计算机能不但能够被全自动地训练去玩儿ATARI(译注:一种游戏机)游戏(直接输入游戏的原生的像素数据),还能击败围棋的世界冠军.模拟四足动物上蹿下跳.机器人还能学习如何进行复杂的控制任务,甚至比直接编写的程序效果还要好.这些在各个方面的领先都应该被归功于增强学习遍地开花般的研究.我本人在过去几年中也对增强学习非常感兴趣:我完成了Richard Sutton的书,看…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
Tutorials on Inverse Reinforcement Learning 2018-07-22 21:44:39 1. Papers:  Inverse Reinforcement Learning: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.2178&rep=rep1&type=pdf Cooperative Inverse Reinforcement Learning: http://pape…
(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning 摘要 近年来,实时策略游戏一直是游戏人工智能的重要领域.本文提出了一个强化学习和课程转换学习方法来控制星际争霸微操作中的多个单位.我们定义了一个有效的状态表示,它可以打破游戏环境中大型状态空间造成的复杂性.…
1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个回顾与总结,特此先简单倒腾了一下博客,使之美观一些,再进行总结.本篇博客先是对交叉熵损失函数进行一个简单的总结. 2. 交叉熵的来源 2.1.信息量 交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起.我们先来看看什么是信息量: 事件A:巴西队进入了2018世界杯决赛圈. 事…
Multi-Agent Reinforcement Learning Based Frame Sampling for Effective Untrimmed Video Recognition ICCV 2019 (oral) 2019-08-01 15:08:19 Paper:https://arxiv.org/abs/1907.13369 1. Backgroud and Motivation: 本文提出一种基于多智能体强化学习的未裁剪视频识别模型,来自适应的从未裁剪视频中,截取出样本视频…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2007.08794v1 [cs.LG] 17 Jul 2020 Abstract 强化学习(RL)算法根据经过多年研究手动发现的几种可能规则之一来更新智能体的参数.从数据中自动发现更新规则可能会导致效率更高的算法,或者更适合特定环境的算法.尽管已经进行了尝试来应对这一重大的科学挑战,但是仍然存在一个未决的问题,即发现RL基本概念的替代方法(例如价值函数和时序差分学习)是否可行.本文介绍了一种新的元学习方法,该方法通过与一…
目录 摘要部分: I. Introduction II. Related Work III. Method **IMPORTANT PART A. RL agent training [第一步] B. PRM construction C. PRM-RL Querying IV. Results A. Indoor Navigation 1) Roadmap construction evaluation 2) Expected trajectory characteristics 3) Act…
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定一步后,获得了较好的结果,那么我们给agent一些回报(比如回报函数结果为正),得到较差的结果,那么回报函数为负.比如,四足机器人,如果他向前走了一步(接近目标),那么回报函数为正,后退为负.如果我们能够对每一步进行评价,得到相应的回报函数,那么就好办了,我们只需要找到一条回报值最大的路径(每步的回…
  Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning This is the 2nd installment of a new series called Deep Learning Resea…
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman方程 DQN 从入门到放弃4 动态规划与Q-Learning DQN从入门到放弃5 深度解读DQN算法 DQN从入门到放弃6 DQN的各种改进 DQN从入门到放弃7 连续控制DQN算法-NAF 12/29/2016 看完1和2: 1.2 Deep Reinforcement Learning 深度增…
智能车 self driving car + 强化学习 reinforcement learning + 神经网络 模拟 https://github.com/MorvanZhou/my_research/tree/master/self_driving_research_DQN Reinforcement Learning for Autonomous Driving Obstacle Avoidance using LIDAR https://github.com/peteflorence/…
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function. 这个设计的主要特色在于 generalize learning across actions w…
Reinforcement Learning for Profit July 17, 2016 Is RL being used in revenue generating systems today?   Recently, one of my facebook friends, and alumni of the University of Alberta (with a PhD in Computing Science), Cosmin Paduraru posed a question:…
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimation…