spark是个啥? Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发. Spark和Hadoop有什么不同呢? Spark是基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.   Spark的适用场景 Spark是基于内存的迭代计算框架,适用于需…
捣鼓了一下,先来个手动挡吧.自动挡要设置ssh无密码登陆啥的,后面开搞. 一.手动多台机链接master 手动链接master其实上篇已经用过. 这里有两台机器: 10.60.215.41 启动master.worker1.application(spark shell) 10.0.2.15 启动worker2 具体步骤如下: 1.在10.60.215.41 上 $SPARK_HOME $ ./sbin/start-master.sh $SPARK_HOME $./bin/spark-class…
部署暂时先用默认配置,我们来看看如何提交计算程序到spark上面. 拿官方的Python的测试程序搞一下. qpzhang@qpzhangdeMac-mini:~/project/spark-1.3.0-bin-hadoop2.4 $cat examples/SimpleApp.py """SimpleApp.py""" from pyspark import SparkContext logFile = "./README.md&qu…
mesos集群部署参见上篇. 运行在mesos上面和 spark standalone模式的区别是: 1)stand alone 需要自己启动spark master 需要自己启动spark slaver(即工作的worker) 2)运行在mesos 启动mesos master 启动mesos slaver 启动spark的 ./sbin/start-mesos-dispatcher.sh -m mesos://127.0.0.1:5050 配置spark的可执行程序的路径(也就是mesos里…
通过搭建和运行example,我们初步认识了spark. 大概是这么一个流程 ------------------------------                 ----------------------              ---------------------- | Application(spark shell) |   <=>       | Spark Master       |  <=>   |    Spark Slavers   | ----…
0.前言 0.1  分布式运算框架的核心思想(此处以MR运行在yarn上为例)  提交job时,resourcemanager(图中写成了master)会根据数据的量以及工作的复杂度,解析工作量,从而产生任务(有多少个MapTask以及多少个ReduceTask),然后根据各个nodemanage节点资源情况进行任务划分.最后得到结果存入hdfs中或者是数据库中 注意:由图可知,map任务和reduce任务在不同的节点上,那么reduce是如何获取经过map处理的数据呢?======>shuff…
概述 什么是Spark ◆ Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更 好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所示: Spark与Hadoop的对比 ◆ Spark的中…
1.什么是Spark? Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MadReduce所具有的优点:但不同于MapReduce的是Job中间输出的结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法. 2.Spark的架构? Bagel(Pregel on Spark)    …
原文地址:http://tech.uc.cn/?p=2116 概述 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所…
原文地址:http://soft.chinabyte.com/database/431/12914931.shtml 概述 什么是Spark ◆ Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机…
前提:安装好jdk1.7,hadoop 安装步骤: 1.安装scala 下载地址:http://www.scala-lang.org/download/ 配置环境变量: export SCALA_HOME=/..../scala export PATH=.:$SCALA_HOME/bin   .... 验证:scala -version 2.安装spark 使用自己编译过的对应自己hadoop的spark 配置环境变量: export SPARK_HOME=/.../spark export P…
Standalone与Yarn启动和运行时间测试: 写一个简单的wordcount: 打包上传运行: Standalone启动: 运行时间: Yarn启动: 运行时间: 测试结果: Standalone要比Yarn启动快10-15s…
参考:http://dataknocker.github.io/2014/11/12/idea%E4%B8%8Adebug-spark-standalone/ 转载请注明来自:http://www.cnblogs.com/yuananyun/p/4265706.html 研究Spark源码也有一段时间了,一直都是直接看代码,没有调试.虽然带着思路去看源代码已经能够帮助我们去了解Spark了:但是很多细节从字面上是看不出来的,如果我能够通过运行时调试验证我的想法,或者能够查看某个类中变量和结构在运…
前期博客 Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master.slave1和slave2)  Spark运行模式概述 1. Standalone模式     即独立模式,自带完整的服务,可单独部署到一个集群中,无需依赖任何其他资源管理系统.从一定程度上说,该模式是其他两种的基础.借鉴Spark开发模式,我们可以得到一种开发新型计算框架的一般思路:先设计出它的standalone模式,为了快速开发,起初不需要考虑服务(比如mast…
配置Spark standalone HA 主机:node1,node2,node3 master: node1,node2 slave:node2,node3 修改配置文件: node1,node3: spark-env.sh export SPARK_MASTER_IP=node1 export SPARK_MASTER_PORT= export SPARK_WORKER_CORES= export SPARK_WORKER_INSTANCES= export SPARK_WORKER_ME…
虽然spark master挂掉的几率很低,不过还是被我遇到了一次.以前在spark standalone的文章中也介绍过standalone的ha,现在详细说下部署流程,其实也比较简单. 一.机器 zookeeper集群 zk1:2181 zk2:2181 zk3:2181 spark master spark-m1 spark-m2 spark worker 若干 二.步骤 1.进入spark-m1 修改conf/spark-env.sh vi spark-env.sh export SPA…
关于这个spark的环境搭建了好久,踩了一堆坑,今天 环境: WIN7笔记本  spark 集群(4个虚拟机搭建的) Intelij IDEA15 scala-2.10.4 java-1.7.0 版本问题: 个人选择的是hadoop2.6.0 spark1.5.0 scala2.10.4  jdk1.7.0 关于搭建集群环境,见个人的上一篇博客:(一) Spark Standalone集群环境搭建,接下来就是用Intelij IDEA来远程连接spark集群,这样就可以方便的在本机上进行调试.…
Spark Standalone模式 安装Spark Standalone集群 手动启动集群 集群创建脚本 提交应用到集群 创建Spark应用 资源调度及分配 监控与日志 与Hadoop共存 配置网络安全端口 高可用性 基于Zookeeper的Master 本地系统的单节点恢复 除了运行在mesos或yarn集群管理器中,spark也提供了简单的standalone部署模式.你可以通过手动启动master和worker节点来创建集群,或者用官网提供的启动脚本.这些守护进程也可以只在一台机器上以便…
Spark standalone安装-最小化集群部署(Spark官方建议使用Standalone模式)        集群规划:    主机        IP                    软件      进程    sc1        192.168.1.61    spark    Master.Worker    sc2        192.168.1.62    spark    Worker    sc3        192.168.1.63    spark    W…
作者:过往记忆 | 新浪微博:左手牵右手TEL | 能够转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明博客地址:http://www.iteblog.com/文章标题:<Spark Standalone模式应用程序开发>本文链接:http://www.iteblog.com/archives/1041Hadoop.Hive.Hbase.Flume等QQ交流群:138615359(已满),请增加新群:149892483本博客的微信公共帐号为:iteblog_hadoop,欢迎大家…
1.spark standalone模式下,worker与executor是一一对应的. 2.如果想要多个worker,那么需要修改spark-env的SPARK_WORKER_INSTANCES为2,那么开启集群后, 每个节点就是两个worker了,然后启动任务后,每个节点就是两个executor啦 3.提高每个executor配置(即内核和内存)后,会增加集群的处理性能.  嗯,反正测试的结果就是这样的.  (同样的数据量同样的结点,然后executor的配置不同)…
Spark Standalone模式常见的HA部署方式有两种:基于文件系统的HA和基于ZK的HA 本篇只介绍基于ZK的HA环境搭建: $SPARK_HOME/conf/spark-env.sh 添加SPARK_DAEMON_JAVA_OPTS的配置信息: export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop000:2181,hadoop001…
Spark Standalone 部署配置 Standalone架构 手工启动一个Spark集群 https://spark.apache.org/docs/latest/spark-standalone.html 通过脚本启动集群 编辑slaves,其实把worker所在节点添加进去 配置spark-defaults.conf 启动集群(我这里是三节点集群) 在浏览器打开页面 修改 spark-env.sh 文件 先停止 在重新启动一下 再次访问网页 下面跑一个Job实例 ./spark-su…
本文记录了一次搭建spark-standalone模式集群的过程,我准备了3个虚拟机服务器,三个centos系统的虚拟机. 环境准备: -每台上安装java1.8 -以及scala2.11.x (x代表后面的版本随意) -以及spark2.2.0 注意:scala和spark的版本要匹配,可以查看spark安装目录下的scala包的版本号来找相应的scala包.java要安装1.8的不然会报错.任务提交时driver会和集群节点传输文件所以集群中各个节点要保存driver的ssh公钥. 以上软件…
 前期博客  Spark运行模式概述 Spark standalone简介与运行wordcount(master.slave1和slave2) 开篇要明白 (1)spark-env.sh 是环境变量配置文件 (2)spark-defaults.conf (3)slaves 是从节点机器配置文件 (4)metrics.properties 是 监控 (5)log4j.properties 是配置日志 (5)fairscheduler.xml是公平调度 (6)docker.properties 是…
不多说,直接上干货! Spark Standalone的几种提交方式 别忘了先启动spark集群!!! spark-shell用于调试,spark-submit用于生产. 1.spark-shell client [spark@master spark-1.6.1-bin-hadoop2.6]$ bin/spark-shell --master spark://master:7077 --deploy-mode client --total-executor-cores 4 --executor…
04.Spark Standalone集群搭建 4.1 集群概述 独立模式是Spark集群模式之一,需要在多台节点上安装spark软件包,并分别启动master节点和worker节点.master节点是管理节点,负责和各worker节点通信,完成worker的注册与注销.worker节点是任务执行节点,通过worker节点孵化出执行器子进程来执行任务. 4.2 集群规划 这里使用4台主机部署Spark集群,主机名称分别是s101.s102.s103和s104. s101 #Master节点 s1…
之前在 大话Spark(2)里讲过Spark Yarn-Client的运行模式,有同学反馈与Cluster模式没有对比, 这里我重新整理了三张图分别看下Standalone,Yarn-Client 和 Yarn-Cluster的运行流程. 1.独立(Standalone)运行模式  独立运行模式是Spark自身实现的资源调度框架,由客户端.Master节点和多个Worker节点组成.其中SparkContext既可以运行在Master节点上,也可以运行在客户端. Worker节点可以通过Exe…
1 redis的事务(pipeline)测试 Redis本身对数据进行操作,单条命令是原子性的,但事务不保证原子性,且没有回滚.事务中任何命令执行失败,其余的命令仍会被执行,将Redis的多个操作放到一起执行,要成功多成功,如果失败了,可以把整个操作放弃,可以实现类似事物的功能.redis事务包含三个阶段:开始事务,命令入队,执行事务.redis的分片副本集集群不支持pipeline,redis只支持单机版的事务(pipeline),Redis的主从复制也支持pipeline(目前一些公司就是这…
when you build a spark standalone ha cluster, when you submit your app,  you should send it to the leader master, not the standby master, how to decided the status of the two masters? a simple way, not judge the status which master is the active, you…