spark优势在于基于内存计算,速度很快,计算的中间结果也缓存在内存,同时spark也支持streaming流运算和sql运算 Mesos是资源管理框架,作为资源管理和任务调度,类似Hadoop中的Yran Tachyon是分布式内存文件系统 Spark是核心计算引擎,能够将数据并行大规模计算 Spark Streaming是流式计算引擎,将每个数据切分成小块采用spark运算范式进行运算 Spark SQL是Spark的SQL ON Hadoop,能够用sql来对数据进行查询等功能 Graph…
master为主节点 一个集群中可能运行多个application,因此也可能会有多个driver DAG Scheduler就是讲RDD Graph拆分成一个个stage 一个Task对应一个SparkEnv 客户端提交请求,然后master生成driver,生成对应的SparkContext,然后将任务拆分为多个RDD,对应上述流程 用户自定义Spark程序并且提交后,生成Driver Program,然后生成多个Job,每个JOB根据RDD的宽依赖关系来生成多个stage,一个stage对…
kafka的客户端也支持其他语言,这里主要介绍python和java的实现,这两门语言比较主流和热门 图中有四个分区,每个图形对应一个consumer,任意一对一即可 获取topic的分区数,每个分区创建一个进程消费分区中的数据. 每个进程的实例中,先要创建连接kafka的实例,然后指定连接到哪个topic(主图),哪个分区 之后要设置kafka的偏移量,kafka中每条消息都有偏移量,如果消费者突然宕机了,则可以从上个偏移量继续消费 提交偏移量的工作客户端都会默认操作,因此提交偏移量可选 后续…
这些场景的共同点就是数据由上层框架产生,需要由下层框架计算,其中间层就需要有一个消息队列传输系统 Apache flume系统,用于日志收集 Apache storm系统,用于实时数据处理 Spark系统,用于内存数据处理 elasticsearch系统,用于全文检索 broker中每个partition都会有备份,可自行设置,前端程序和读取数据的程序都可以是自己写的程序或者是各类框架,例如hadoop,flume 搭建集群: kafka的包需要事先下载好,zookeeper环境搭建之前已经做过…
Hive架构图: 一般用户接口采用命令行操作, hive与hbase整合之后架构图: 使用场景 场景一:通过insert语句,将文件或者table中的内容加入到hive中,由于hive和hbase已经整合,因此也会加入到hbase当中 场景二:hbase不支持join或者gruop等,可以通过这种方式,让hbase支持sql语句等 场景三,使用Hbase加载数据,然后用Hive查询数据,这样既有了Hbase的高速读写数据,也有了Hive的sql语句方便查询: 部署hive整合hbase环境: 先…
Hive主要为了简化MapReduce流程,使非编程人员也能进行数据的梳理,即直接使用sql语句代替MapReduce程序 Hive建表的时候元数据(表明,字段信息等)存于关系型数据库中,数据存于HDFS中. 此元数据与HDFS中的元数据需要区分清楚,HDFS中元数据(文件名,文件长度等)存于Namenode中,数据存于Datanode中. 本次使用的是hive1.2.2版本 下载完毕之后解压: 将default文件复制一份成site文件,然后打开site文件,清空其内容,然后配置如下参数: h…
概要: hadoop和hbase导入环境变量: 要运行Hbase中自带的MapReduce程序,需要运行如下指令,可在官网中找到: 如果遇到如下问题,则说明Hadoop的MapReduce没有权限访问Hbase的jar包: 参考官网可解决: 运行后解决: 导入数据运行指令: tsv是指以制表符为分隔符的文件 先创建测试数据,创建user文件: 上传至hdfs,并且启动hbase shell: 创建表: 之后导入数据: 还有一些其他的方法,比如rowcounter统计行数: 接下来演示用sqoop…
简而言之,Hbase就是一个建立在Hdfs文件系统上的数据库(mysql,orecle等),不同的是Hbase是针对列的数据库 Hbase和普通的关系型数据库区别如下: Hbase有一些基本的术语,主键,列族,时间戳和存储单元: 一个行健有多个列族,每个列族下有不同的存储单元,可用看成类似键值对的方式,每一个版本都有一个时间戳, Hbase下载之后,tar命令解压(解压前需先部署hadoop环境和java环境,本例子中使用的hadoop也是伪分布式) 之后找到hbase-env.sh文件,加上j…
Hbase结构图: Client,Zookeeper,Hmaster和HRegionServer相互交互协调,各个组件作用如下: 这几个组件在实际使用过程中操作如下所示: Region定位,先读取zookeeper中的文件,得到root表信息,然后得到meta表的信息,从而操作用户表,0.98之后hbase直接存储mate表, 后面详解一下Hbase的数据存储: 数据进入Hbase之后,先通过zookeeper找到对用的regionserver,如上述region server定位图所示,下图省…
Spark简介 [TOC] Spark是什么 Spark是基于内存计算的大数据并行计算框架 Spark是MapReduce的替代方案 Spark与Hadoop Spark是一个计算框架,而Hadoop中包含计算框架MapReduce和分布式文件系统HDFS,Hadoop更广泛地说还包括在其生态系统上的其他系统. Spark的优势 中间结果输出 基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行储存和容错.当一些查询翻译到MapReduce任务是,往往会产生多个Stage,而这些串…
最近泛做了期望的相关题目,大概\(Luogu\)上提供的比较简单的题都做了吧\(233\) 好吧其实是好几天之前做的了,不过因为太颓废一直没有整理-- \(Task1\) 期望的定义 在概率论和统计学中,数学期望(\(mean\))(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一.它反映随机变量平均取值的大小. 需要注意的是,期望值并不一定等同于常识中的"期望"--"期望值"也许与每一个结果都不相等.期望值是该变量输出值的平均…
数据库表是一个二维表,包含多行多列.把一个表的内容用Python的数据结构表示出来的话,可以用一个list表示多行,list的每一个元素是tuple,表示一行记录,比如,包含id和name的user表: [ ('1', 'Michael'), ('2', 'Bob'), ('3', 'Adam') ] Python的DB-API返回的数据结构就是像上面这样表示的. 但是用tuple表示一行很难看出表的结构.如果把一个tuple用class实例来表示,就可以更容易地看出表的结构来: class U…
<!DOCTYPE html><html lang="zh-CN"><head> <meta charset="UTF-8"> <title>显示在网页头上</title></head><body>任何标签都有三个属性<br>1.id<br>2.style<br>3.class 样式<br><h1>1.h标签标题…
echo '<pre>';//格式化输出字符 isset();//判断变量是否存在 array_key_exists('key',$arr);//判断数组下标是否存在 in_array('val',$arr);//检查值是否存在数组 数组游标 $arr=array('a','b''c'); echo current($arr); //获取当前的游标 next($arr);//向下移动一位 echo current($arr); //获取当前的游标 prev($arr);//返加上一位 echo…
在IO编程中,我们知道CPU的速度远远快于磁盘,网络IO,在一个线程中,CPU执行速度的代码非常快,然而遇到IO操作就需要阻塞 需要等待IO操作完成才能继续下一步的动作.这种情况叫做同步IO 在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行. 因为一个IO阻塞了当前线程,导致后边的代码无法运行,我们必须使用多线程或者多进程来并发执行代码,为多个用户服务, 每个用户分配一个线程,如果遇到IO导致线程被挂起,其他用户的县城不受影响 多线程和多进程模型确实解决了并发问…
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # Youku video tutorial: http://i.youku.com/pythontutorial """ Please note, this code…
Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java…
python3.4学习笔记(二十三) Python调用淘宝IP库获取IP归属地返回省市运营商实例代码 淘宝IP地址库 http://ip.taobao.com/目前提供的服务包括:1. 根据用户提供的IP地址,快速查询出该IP地址所在的地理信息和地理相关的信息,包括国家.省.市和运营商.2. 用户可以根据自己所在的位置和使用的IP地址更新我们的服务内容.我们的优势:1. 提供国家.省.市.县.运营商全方位信息,信息维度广,格式规范.2. 提供完善的统计分析报表,省准确度超过99.8%,市准确度超…
目录 学习笔记:CentOS7学习之二十三: 跳出循环-shift参数左移-函数的使用 23.1 跳出循环 23.1.1 break和continue 23.2 Shift参数左移指令 23.3 函数的使用 23.3.1 函数创建语法 23.3.2 函数的使用 23.3.3 返回值 23.3.4 把函数值赋给变量使用 23.3.5 函数的传递 23.3.7 函数中变量的处理 23.4 实战-自动备份mysql数据库脚本和nginx服务启动脚本 23.4.1 自动备份mysql数据库脚本 23.4…
Yarn学习 YARN简介 YARN是一个通用资源管理系统和调度平台,可为上层应用提供统一的资源管理和调度 YARN功能说明 资源管理系统:集群的硬件资源,和程序运行相关,比如内存.CPU等. 调度平台:多个程序同时申请计算资源如何分配,调度的规则(算法). 通用:不仅仅支持MapReduce程序,理论上支持各种计算程序.YARN不关心你干什么,只关心你要资源,在有 的情况下给你,用完之后还我. 即使MapReduce现在不流行了 也可以用别的计算模型来替代 如 spark flink,一定程度…
二十三. 运行时类型识别 ● 定义 运行时类型识别(Run-time Type Identification, RTTI) 通过RTTI, 程序能够使用基类的指针或引用来检查(check)这些指针或引用所指对象的实际派生类型. C++通过下面两个操作符提供RTTI: ① typeid操作符, 返回指针或引用所指对象的实际类型; ② dynamic_cast操作符, 将基类类型的指针或引用安全地转换为派生类型的指针或引用. ● 基类指针访问子类的特有成员函数 #include <iostream>…
一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Hadoop这个开源产品的出现,打破…
之前有幸在MOOC学院抽中小象学院hadoop体验课. 这是小象学院hadoop2.X概述第一章的笔记 第一章主要讲的是hadoop基础知识.老师讲的还是比较全面简单的,起码作为一个非专业码农以及数据库管理人员,也能狗大致了解其特点.后面因为8月比较忙,就主要看案例那一部分了,应用及基础部分笔记基本没怎么做. 基本上是3/4屏幕放视频,1/4开着马克飞象 首先是概括图(以hadoop2.0为例)  不在博客园上阅读时才会看到的,这篇博文归http://www.cnblogs.com/weibaa…
随着毕业设计的进行,大学四年正式进入尾声.任你玩四年的大学的最后一次作业最后在激烈的选题中尘埃落定.无论选择了怎样的选题,无论最后的结果是怎样的,对于大学里面的这最后一份作业,也希望自己能够尽心尽力,好好做.正是因为选题和hadoop有关,现在正式开始学习hadoop.将笔记整理于此,希望与志同道合的朋友共同交流. 作者:itRed 邮箱:it_red@sina.com 个人博客链接:http://www.cnblogs.com/itred 好了,废话不多说.进入正题!开始hadoop的学习.…
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形成大数据处理一站式解决平台. Spark使用Scala语言实现,…
spark 是基于内存计算的 大数据分布式计算框架,spark基于内存计算,提高了在大数据环境下处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将spark部署在大量廉价的硬件上,形成集群. 1. 分布式计算2. 内存计算3. 容错4. 多计算范式 Messos 作为资源管理框架.相当于yarn,进行资源管理以及调度. spark生态系统,不提供存储层,可以调用外部存储,例如HDFS Tachyon 是 分布式内存文件系统,能够缓存数据,并提供数据快速读写. spark 是核心计算引擎,能…
前言 第一章主要讲的是hadoop基础知识.老师讲的还是比较全面简单的,起码作为一个非专业码农以及数据库管理人员,也能狗大致了解其特点 首先是概括图(以hadoop2.0为例)  一.Hadoop基础架构: HDFS(分布式存储层,主要储存数据) YARN(集群资源管理层) MapReduce 分布式数据处理,java HDFS为最基本的,分布式文件系统 Redundant, Reliable Storage 它可扩展性好,资源不够时再买服务器就可以直接集成了.另外数据重分布也很方便,对服务器崩…
本系列文章由zhmxy555(毛星云)编写,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/16384009 作者:毛星云(浅墨)    邮箱: happylifemxy@163.com 众所周知,GUI是游戏中不可缺少的元素,这篇文章中,我们首先了解了游戏GUI界面的知识与相关概念,然后一起设计了一个封装好GUI图形界面的C++类.这个类有着非常强的扩展性,使用也是极其方便,很适合二次开发. 先看一张实现的效果图吧:…
原文:从头开始学JavaScript 笔记(一)--基础中的基础 概要:javascript的组成. 各个组成部分的作用 . 一.javascript的组成   javascript   ECMAScript(核心) DOM(文档对象模型) BOM(浏览器对象模型) 1.1ECMAScript ECMAScript是通过ECMA-262标准化的脚本语言,ECMA-262规定语言的:语法.类型.语句.关键字.保留字.操作符.对象 1.2 DOM DOM把整个页面映射为一个多层节点结构,HTML或者…
市面上有一些初学者的误解,他们拿spark和hadoop比较时就会说,Spark是内存计算,内存计算是spark的特性.请问在计算机领域,mysql,redis,ssh框架等等他们不是内存计算吗?依据冯诺依曼体系结构,有什么技术的程序不是在内存中运行,需要数据从硬盘中拉取,然后供cpu进行执行?所有说sprk的特点是内存计算相当于什么都没有说.那么spark的真正特点是什么?抛开spark的执行模型的方式,它的特点无非就是多个任务之间数据通信不需要借助硬盘而是通过内存,大大提高了程序的执行效率.…