首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Pandas系列(十七)-EDA(pandas-profiling)
】的更多相关文章
Pandas系列之入门篇
Pandas系列之入门篇 简介 pandas 是 python用来数据清洗.分析的包,可以使用类sql的语法方便的进行数据关联.查询,属于内存计算范畴, 效率远远高于硬盘计算的数据库存储.另外pandas还提供了大数据存储的API--HDFStore,来对接HDF5. 安装 pandas 利用豆瓣源,速度快 pip install pandas numpy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com pytabl…
Pandas系列
系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. pandas.Series Pandas系列可以使用以下构造函数创建 - pandas.Series( data, index, dtype, copy). Python 构造函数的参数如下 - 编号 参数 描述 1 data 数据采取各种形式,如:ndarray,list,constants 2 index 索引值必须是唯一的和散列的,与数据的长度相同. 默认np.ara…
【跟着stackoverflow学Pandas】 -Get list from pandas DataFrame column headers - Pandas 获取列名
最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15 Get list from pandas DataFrame column headers - Pandas 获取列名 https://stackoverflow.com/ques…
Web 前端开发精华文章集锦(jQuery、HTML5、CSS3)【系列十七】
<Web 前端开发精华文章推荐>2013年第五期(总第十七期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 CSS3 技术应用,推荐优秀的 网页设计 案例,共享精美的设计素材和优秀的 Web 开发工具,希望这些精心整理的前端技术文章能够帮助到您. JavaScript [干货分享]32本优秀的 JavaScript 免费电子书 Verlet-js:超炫的开源 JavaScript 物理引擎 优秀教程:创建基于 Aja…
pandas教程1:pandas数据结构入门
pandas是一个用于进行python科学计算的常用库,包含高级的数据结构和精巧的工具,使得在Python中处理数据非常快速和简单.pandas建造在NumPy之上,它使得以NumPy为中心的应用很容易使用. pandas为数据提供了一些解决方案: 支持自动或明确的数据对齐的带有标签轴的数据结构.这可以防止由数据不对齐引起的常见错误,并可以处理不同来源的不同索引数据. 整合的时间序列功能. 以相同的数据结构来处理时间序列和非时间序列. 支持传递元数据(坐标轴标签)的算术运算和缩减. 灵活处理丢失…
Python:pandas(二)——pandas函数
Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: ... 数据操作 melt 将DataFrame从一个宽类型转化为长类型:固定某一列,看该列变量其他列的值 pivot 用某些列将DataFrame变形(不是常见的大小变形) cut 切割一个一维数据为离散的区间 qcut 与cut相似,区别在于cut是等长切割,qcut是等元素数切割 merge 连接…
Pandas系列(十七)-EDA(pandas-profiling)
对于探索性数据分析来说,做数据分析前需要先看一下数据的总体概况,pandas_profiling工具可以快速预览数据. 安装 pip install pandas-profiling 使用 import pandas as pd import pandas_profiling data = pd.read_csv('books.csv') pandas_profiling.ProfileReport(data) profile = pandas_profiling.ProfileReport(d…
Pandas系列教程——写在前面
之前搜pandas资料,发现互联网上并没有成体系的pandas教程,于是乎突然有个爱迪页儿,打算自己把官网的文档加上自己用pandas的理解,写成一个系列的教程, 巩固自己,方便他人 接下来就干这件事吧~~~ 是为序…
Pandas系列之入门篇——HDF5
Pandas系列之入门篇--HDF5 简介 HDF5(层次性数据格式)作用于大数据存储,其高效的压缩方式节约了不少硬盘空间,同时也给查询效率带来了一定的影响, 压缩效率越高,查询效率越低.pandas 0.20.1之后的版本默认选用blosc压缩,跟bzip2相比,其间做了一个小测试,10000 条数据,bzip2的压缩率是blosc的30倍,而查询效率blosc却是bzip2的8倍.至于项目中选用哪种压缩方式,需要看具体需求. 回顾上一节<Pandas系列之入门篇> 上一节提到用hdf5作为…
Pandas系列(四)-文本数据处理
内容目录 1. 为什么要用str属性 2. 替换和分割 3. 提取子串 3.1 提取第一个匹配的子串 3.2 匹配所有子串 3.3 测试是否包含子串 3.4 生成哑变量 3.5 方法摘要 一.为什么要用str属性? # 导入相关库 import numpy as np import pandas as pd index = pd.Index(data=["Tom", "Bob", "Mary", "James", "…
Pandas系列(一)-Series详解
一.初始Series Series 是一个带有 名称 和索引的一维数组,既然是数组,肯定要说到的就是数组中的元素类型,在 Series 中包含的数据类型可以是整数.浮点.字符串.Python对象等. pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False) 创建第一个Series import pandas as pd user_age = pd.Series(data=[18,…
Pandas系列(二)- DataFrame数据框
一.初识DataFrame dataFrame 是一个带有索引的二维数据结构,每列可以有自己的名字,并且可以有不同的数据类型.你可以把它想象成一个 excel 表格或者数据库中的一张表DataFrame是最常用的 Pandas 对象. 二.数据框的创建 1.字典套列表方式创建 index = pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name"…
Pandas系列(三)-缺失值处理
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") da…
Pandas系列(五)-分类数据处理
内容目录 1. 创建对象 2. 常用操作 3. 内存使用量的陷阱 一.创建对象 1.基本概念:分类数据直白来说就是取值为有限的,或者说是固定数量的可能值.例如:性别.血型. 2.创建分类数据:这里以血型为例,假定每个用户有以下的血型,我们如何创建一个关于血型的分类对象呢? 方法一:明确指定 dtype="category" index = pd.Index(data=["Tom", "Bob", "Mary", "J…
Pandas系列(六)-时间序列详解
内容目录 1. 基础概述 2. 转换时间戳 3. 生成时间戳范围 4. DatetimeIndex 5. DateOffset对象 6. 与时间序列相关的方法 6.1 移动 6.2 频率转换 6.3 重采样 在处理时间序列的的过程中,我们经常会去做以下一些任务: 生成固定频率日期和时间跨度的序列 将时间序列整合或转换为特定频率 基于各种非标准时间增量(例如,在一年的最后一个工作日之前的5个工作日)计算“相对”日期,或向前或向后“滚动”日期 使用 Pandas 可以轻松完成以上任务. 一.基础概述…
Pandas系列(七)-计算工具介绍
内容目录 1. 统计函数 2. 窗口函数 3. 加深加强 数据准备 # 导入相关库 import numpy as np import pandas as pd #Pandas 中包含了非常丰富的计算工具,如一些统计函数.窗口函数.聚合等计算工具. index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"]…
Pandas系列(八)-筛选工具介绍
内容目录 1. 字典式 get 访问 2. 属性访问 3. 切片操作 4. 通过数字筛选行和列 5. 通过名称筛选行和列 6. 布尔索引 7. isin 筛选 8. 通过Callable筛选 数据准备 # 导入相关库 import numpy as np import pandas as pd index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy&qu…
Pandas系列(九)-分组聚合详解
目录 1. 将对象分割成组 1.1 关闭排序 1.2 选择列 1.3 遍历分组 1.4 选择一个组 2. 聚合 2.1 一次应用多个聚合操作 2.2 对DataFrame列应用不同的聚合操作 3. transform 操作 4. apply 操作 数据准备 # 导入相关库 import numpy as np import pandas as pd index = pd.Index(data=["Tom", "Bob", "Mary", &quo…
Pandas系列(十)-转换连接详解
目录 1. 拼接 1.1 append 1.2 concat 2. 关联 2.1 merge 2.2 join 数据准备 # 导入相关库 import numpy as np import pandas as pd """ 拼接 有两个DataFrame,都存储了用户的一些信息,现在要拼接起来,组成一个DataFrame,如何实现呢? """ data1 = { "name": ["Tom", "…
Pandas系列(十一)-文件IO操作
数据分析过程中经常需要进行读写操作,Pandas实现了很多 IO 操作的API,这里简单做了一个列举. 格式类型 数据描述 Reader Writer text CSV read_ csv to_csv text JSON read_json to_json text HTML read_html to_html text clipboard read_clipboard to_clipboard binary Excel read_excel to_excel binary HDF5 read…
Pandas系列(十二)-可视化详解
目录 1. 折线图 2. 柱状图 3. 直方图 4. 箱线图 5. 区域图 6. 散点图 7. 饼图六边形容器图 数据分析的结果不仅仅只是你来看的,更多的时候是给需求方或者老板来看的,为了更直观地看出结果, 数据可视化是必不可少的一个环节.这里带大家来看下一些常用的图形的画法. 数据准备 # 导入相关库 import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib # matplo…
Pandas系列(十三)-其他常用功能
一.统计数据频率 1. values_counts pd.value_counts(df.column_name) df.column_name.value_counts() Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)[source] Return a Series containing counts of unique values. 参数详解 normaliz…
Pandas系列(十四)- 实战案例
一.series import pandas as pd import string #创建Series的两种方式 #方式一 t = pd.Series([1,2,3,4,43],index=list('asdfg')) print(t) #方式二 temp_dict = {'name':'xiaohong','age':30,'tel':10086} t2 = pd.Series(temp_dict) print(t2) #字典推导式 a = {string.ascii_uppercase[i…
Pandas系列(十六)- 你需要学会的骚操作
pandas有一种功能非常强大的方法,它就是accessor,可以将它理解为一种属性接口,通过它可以获得额外的方法.其实这样说还是很笼统,下面我们通过代码和实例来理解一下. pd.Series._accessors Out[93]: {'cat', 'dt', 'str'} 对于Series数据结构使用_accessors方法,我们得到了3个对象:cat,str,dt. .cat:用于分类数据(Categorical data) .str:用于字符数据(String Object data) .…
Pandas系列-读取csv/txt/excel/mysql数据
本代码演示: pandas读取纯文本文件 读取csv文件 读取txt文件 pandas读取xlsx格式excel文件 pandas读取mysql数据表 import pandas as pd 1.读取纯文本文件 1.1 读取CSV,使用默认的标题行.逗号分隔符 fpath = "./datas/ml-latest-small/ratings.csv" # 使用pd.read_csv读取数据 ratings = pd.read_csv(fpath) # 查看前几行数据 ratings.h…
Pandas系列(十八)- 多级索引
多级索引 多级索引(也称层次化索引)是pandas的重要功能,可以在Series.DataFrame对象上拥有2个以及2个以上的索引.实质上,单级索引对应Index对象,多级索引对应MultiIndex对象. 一.Series对象的多级索引 多级索引Series对象的创建 import pandas as pd import numpy as np se1=pd.Series(np.random.randn(4),index=[list("aabb"),[1,2,1,2]]) se1…
【转】Pandas的Apply函数——Pandas中最好用的函数
转自:https://blog.csdn.net/qq_19528953/article/details/79348929 import pandas as pd import datetime #用来计算日期差的包 def dataInterval(data1,data2): d1 = datetime.datetime.strptime(data1, '%Y-%m-%d') d2 = datetime.datetime.strptime(data2, '%Y-%m-%d') delta =…
基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数据集. 所以可以是如下的 dictionary 的形式: web_stats = {'Day':[1,2,3,4,5,6], 'Visitors':[43,34,65,56,29,76], 'Bounce Rate':[65,67,78,65,45,52]} 我们可以通过如下方式把这个 dictio…
python3安装pandas执行pip3 install pandas命令后卡住不动的问题及安装scipy、sklearn库的numpy.distutils.system_info.NotFoundError: no lapack/blas resources found问题
一直尝试在python3中安装pandas等一系列软件,但每次执行pip3 install pandas后就卡住不动了,一直停在那,开始以为是pip命令的版本不对,还执行过 python -m pip3 install -U pip3 升级命令,发现还是不行.有了上一篇python2中安装的经验可知肯定是numpy的版本不对,查看 /usr/lib/python3/dist-packages 目录下查看发现确实是1.8的版本,而从python2中的经验可知应该至少得1.9.0以上的版本. 1.…
[Pandas技巧] 如何把pandas dataframe对象或series对象转换成list
import pandas as pd >>> df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7,8,7,8,9]}) >>> df['a'].values.tolist() [1, 3, 5, 7, 4, 5, 6, 4, 7, 8, 9] or you can just use >>> df['a'].tolist() [1, 3, 5, 7, 4, 5, 6, 4…