When training deep neural networks, it is often useful to reduce learning rate as the training progresses. This can be done by using pre-defined learning rate schedules or adaptive learning rate methods. In this article, I train a convolutional neura…
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结 二.解决方法 1.把下面代码加入keras文件callbacks.py中: class DisplayLearningRate(Callback): '''Display Learning rate . ''' def __init__(self): super(Dis…
I'm using keras 2.1.* and want to change the learning rate during training. I know about the schedule callback, but I don't use fit function and I don't have callbacks. I use train_on_batch. Is it possible in keras ? Solution 1 If you use other funct…
https://blog.csdn.net/xiaotao_1/article/details/78874336 如果learning rate很大,算法会在局部最优点附近来回跳动,不会收敛: 如果learning rate太小,算法每步的移动距离很短,就会导致算法收敛速度很慢. 所以我们可以先设置一个比较大的学习率,随着迭代次数的增加慢慢降低它.mxnet中有现成的类class,我们可以直接引用. 这里有三种mxnet.lr_scheduler. 第一种是: mxnet.lr_schedule…
1. 什么是学习率(Learning rate)?   学习率(Learning rate)作为监督学习以及深度学习中重要的超参,其决定着目标函数能否收敛到局部最小值以及何时收敛到最小值.合适的学习率能够使目标函数在合适的时间内收敛到局部最小值.   这里以梯度下降为例,来观察一下不同的学习率对代价函数的收敛过程的影响(这里以代价函数为凸函数为例):   回顾一下梯度下降的代码:   repeat{      $ \theta_j = \theta_j - \alpha \frac{\Delta…
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当为1时,称为随机梯度下降 一般我们选择64,128, 256等样本数目 import numpy as np import math def random_mini_batch(X, Y, mini_batch = 64, seed=0): np.random.seed(seed) m = X.sh…
def noam_scheme(global_step, num_warmup_steps, num_train_steps, init_lr, warmup=True): """ decay learning rate if warmup > global step, the learning rate will be global_step/num_warmup_steps * init_lr if warmup < global step, the lear…
关于learning rate decay的问题,pytorch 0.2以上的版本已经提供了torch.optim.lr_scheduler的一些函数来解决这个问题. 我在迭代的时候使用的是下面的方法. classtorch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1) >>> # Assuming optimizer uses lr = 0.05 for all group…
degugging:make sure gradient descent is working correctly cost function(J(θ)) of Number of iteration :cost function随着迭代次数增加的变化函数 运行错误的图象是什么样子的:cost function(J(θ)) of Number of iteration随着迭代次数增加而上升(如以下两种图像的情况),应使用较小的learning rate 运行正确的图象是什么样子的:cost fu…
Introduction 学习率 (learning rate),控制 模型的 学习进度 : lr 即 stride (步长) ,即反向传播算法中的 ηη : ωn←ωn−η∂L∂ωnωn←ωn−η∂L∂ωn 学习率大小   学习率 大 学习率 小 学习速度 快 慢 使用时间点 刚开始训练时 一定轮数过后 副作用 1.易损失值爆炸:2.易振荡. 1.易过拟合:2.收敛速度慢. 学习率设置 在训练过程中,一般根据训练轮数设置动态变化的学习率. 刚开始训练时:学习率以 0.01 ~ 0.001 为宜…
file: tensorflow/python/training/learning_rate_decay.py 参考:tensorflow中常用学习率更新策略 神经网络中通过超参数 learning rate,来控制每次参数更新的幅度.学习率太小会降低网络优化的速度,增加训练时间:学习率太大则可能导致可能导致参数在局部最优解两侧来回振荡,网络不能收敛. tensorflow 定义了很多的 学习率衰减方式: 指数衰减 tf.train.exponential_decay() 指数衰减是比较常用的衰…
https://www.zhihu.com/question/64134994 1.增加batch size会使得梯度更准确,但也会导致variance变小,可能会使模型陷入局部最优: 2.因此增大batch size通常要增大learning rate,比如batch size增大m倍,lr增大m倍或者sqrt(m)倍,但并不固定: 3.learning rate的增加通常不能直接增加太大,一般会通过warm up逐步增大: 4.warm up策略参考 Bag of Freebies for…
本文链接:https://blog.csdn.net/program_developer/article/details/80867468“微信公众号” 1. 权重衰减(weight decay)L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化. 1.1 L2正则化与权重衰减系数L2正则化就是在代价函数后面再加上一个正则化项: 其中C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小…
本文从梯度学习算法的角度中看学习率对于学习算法性能的影响,以及介绍如何调整学习率的一般经验和技巧. 在机器学习中,监督式学习(Supervised Learning)通过定义一个模型,并根据训练集上的数据估计最优参数.梯度下降法(Gradient Descent)是一个广泛被用来最小化模型误差的参数优化算法.梯度下降法通过多次迭代,并在每一步中最小化成本函数(cost function)来估计模型的参数(weights). 梯度下降的伪代码如下: 重复已下过程,直到收敛为止{ ωj = ωj -…
Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方指定第三方支持开源框架.但两者在使用GPU时都有一个特点,就是默认为全占满模式.在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃.可以使用自适应配置来调整显存的使用情况. 一.Tensorflow1.指定显卡代码中加入 import osos.environ["CUDA_VISIBLE_…
一.基本环境 )     image = imagenet_utils.preprocess_input(image)     , ))             ]:                 r = {"label": label, "probability": float(prob)}                 data["predictions"].append(r)             # indicate that th…
在mini-batch梯度下降法中,我们曾经说过因为分割了baby batch,所以迭代是有波动而且不能够精确收敛于最小值的 因此如果我们将学习率α逐渐变小,就可以使得在学习率α较大的时候加快模型训练速度,在α变小的时候使得模型迭代的波动逐渐减弱,最终收敛于一个较小的区域来得到较为精确的结果 首先是公式1学习率衰减的标准公式: 其中decay rate即衰减率,epoch-num指的是遍历整个训练集的次数,α0是给定的初始学习率 其次是公式2指数衰减公式: 其中,0.95是一个小于1的初始值,可…
本章节主要讲怎么确定梯度下降的工作是正确的,第二是怎么选择学习率α,如下图所示: 上图显示的是梯度下降算法迭代过程中的代价函数j(θ)的值,横轴是迭代步数,纵轴是j(θ)的值 如果梯度算法正常工作,那么每一步迭代之后,那么j(θ)值应该是每一次迭代后都会相应降低,曲线的用处在于告诉你迭代到哪一步之后,已经收敛了,比如上图迭代到400次之后,j(θ)值基本就收敛了,因为迭代函数并没有随着迭代次数降低. 另外一个方法,叫自动收敛测试,也可以很好的判断梯度下降是否已经达到了收敛,比如j(θ)值在每一步…
梯度下降算法的任务是寻找参数θ,使之能够最小化损失函数. 那么梯度下降法中的学习速率α应该如何选择呢?通常我们画出损失函数随迭代次数增加而变化的曲线. 可能会得到如下的一条曲线,x轴表示迭代次数,y轴表示梯度下降算法迭代相应次数之后算出的损失函数值. 可以看到,当迭代300次之后,损失函数的值并没有下降多少,也就是说在这里梯度下降算法基本上已经收敛了.因此,这条曲线还可以帮助你判断梯度下降算法是否已经收敛.(对于某一个特定的问题,梯度下降算法所需要的迭代次数相差很大,可能对于某一个问题只需要30…
目录 引 主要内容 算法 ADADELTA 代码 引 这篇论文比较短,先看了这篇,本来应该先把ADAGRAD看了的.普通的基于梯度下降的方法,普遍依赖于步长,起始点的选择,所以,受ADAGRAD的启发,作者提出了一种ADADELTA的方法. \[\Delta x_t = -\frac{\mathrm{RMS}[\Delta x]_{t-1}}{\mathrm{RMS}[g]_t}g_t \] 其中\(g_t=\frac{\partial f(x_t)}{\partial x_t}\),所以下一步…
如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Generalization How can you get better performance from your deep learning model? It is one of the most common questions I get asked. It might be asked as: H…
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are notoriously difficult to configure and there are a lot of parameters that need to be set. On top of that, individual models can be very slow to train.…
一.疑问 这几天一直纠结于一个问题: 同样的代码,为什么在keras的0.3.3版本中,拟合得比较好,也没有过拟合,验证集准确率一直高于训练准确率. 但是在换到keras的1.2.0版本中的时候,就过拟合了,验证误差一直高于训练误差 二.答案 今天终于发现原因了,原来是这两个版本的keras的optimezer实现不一样,但是它们的默认参数是一样的,因为我代码中用的是adam方法优化,下面就以optimezer中的adam来举例说明: 1.下面是keras==0.3.3时,其中optimezer…
catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . 效果验证 1. 训练集 Mary moved to the bathroom. John went to the hallway. Where Daniel went back to the hallway. Sandra moved to the garden. Where John moved to t…
使用Keras训练具有多个GPU的深度神经网络(照片来源:Nor-Tech.com). 摘要 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络. 使用多个GPU使我们能够获得准线性加速. 为了验证这一点,我们在CIFAR-10数据集上训练了MiniGoogLeNet. 使用单个GPU,我们能够获得63秒的时间段,总训练时间为74分10秒. 然而,通过使用Keras和Python的多GPU训练,我们将训练时间减少到16秒,总训练时间为19m3s. 使用Keras启…
文章信息 本文地址:http://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html 本文作者:Francois Chollet 概述 在本文中,我们将提供一些面向小数据集(几百张到几千张图片)构造高效.实用的图像分类器的方法. 本文将探讨如下几种方法: 从图片中直接训练一个小网络(作为基准方法) 利用预训练网络的bottleneck(瓶颈)特征 fine-tune预训练网…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
1.Keras输出的loss,val这些值如何保存到文本中去: Keras中的fit函数会返回一个History对象,它的History.history属性会把之前的那些值全保存在里面,如果有验证集的话,也包含了验证集的这些指标变化情况,具体写法: hist=model.fit(train_set_x,train_set_y,batch_size=,shuffle=True,nb_epoch=nb_epoch,validation_split=0.1) with open('log_sgd_bi…
目录 梯度下降法更新参数 Adam 更新参数 Adam + 学习率衰减 Adam 衰减的学习率 References 本文先介绍一般的梯度下降法是如何更新参数的,然后介绍 Adam 如何更新参数,以及 Adam 如何和学习率衰减结合. 梯度下降法更新参数 梯度下降法参数更新公式: \[ \theta_{t+1} = \theta_{t} - \eta \cdot \nabla J(\theta_t) \] 其中,\(\eta\) 是学习率,\(\theta_t\) 是第 \(t\) 轮的参数,\…
论文 Decoupled Weight Decay Regularization 中提到,Adam 在使用时,L2 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时,用 AdamW 替换 Adam+L2 会得到更好的性能. TensorFlow 2.0 在 tensorflow_addons 库里面实现了 AdamW,目前在 Mac 和 Linux 上可以直接 pip install tensorflow_addons,在 windows 上还不支持,但也可以…