欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 递归版算法: int gcd(int a,int b) { ) return a; return gcd(b,a%b); } 递归优化版: int gcd(int a,int b) { return b ? gcd(b,a%b) : a; } 迭代版: int Gcd(int a, int b)…
欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. --百度百科 代码: 递推的代码是相当的简洁: int gcd(int a,int b) { return b == 0 ? a : gcd(b, a % b); } 分析: 方法说了是辗转相除法,自然没有什么好介绍的了. . Fresh肯定会认为这样递归下去会不会爆栈?实际上在这里是不会爆栈的,由于递归的层数是…
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). int gcd(int a,int b) { return b ? gcd(b,a%b) : a; } 扩展欧几里德算法: 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使…
学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 先来学习一下什么是欧几里得算法: 欧几里得原理是:两个整数a ,b的公约数等于b ,a%b这两个数的公约数.即gcd(a,b)=gcd(b,a%b),他们的任何公约数都是相同的,所以他们的最大公约数也是相同的. 那么结合任何数和0的最大公约数都是他自己,就可以得出最大公约数的求解算法了. int gcd(int a, int b) { ) return a…
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem/POJ-1061 题目描述: Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是…
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/s/blog_62e4e31a0101feo7.html 定义如下: 欧几里德算法是用来求两个正整数最大公约数的算法.是由古希腊数学家欧几里德在其著作<The Elements>中最早描述了这种算法,所以被命名为欧几里德算法. 计算公式为:gcd(a,b) = gcd(b,a mod b) 证明:…
斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd(a,b)$ 推论 a,b互素的充要条件是方程$ax+by=1$有整数解. 证明 令$d=gcd(a,b)$,则$d|a,d|b$ 那么就能得到$d|(ax+by)$ 于是我们设s为$ax+by$能得到的最小正整数值,则$d|s$. 令$q=adiv s$(此处为整除),$r=amod s$,则$a…
gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗转相除法输进去时 a 要大于 b ,现在发现事实上如果 a 小于 b,那第一次就会先交换 a 与 b. #include<stdio.h> #define ll long long ll gcd(ll a,ll b){ ?a:gcd(b,a%b); } int main(){ ll a,b; wh…
欧几里得算法的拓展主要是用于求解   : 已知整数 a, b,然后我们进行  ax + by == gcd(a , b) 的问题求解 那么如何进行求解呢?和欧几里得算法一样, 我们需要进行递归的方式进行问题的求解, 而且涉及到  a % b 与 a / b 和 a  的关系 我们假设已经是求出了 b x' + ( a % b ) y' == gcd(a, b); 利用关系, 我们就可以进一步回溯 a y' + b (x' - a / b * y') == gcd(a, b); 但是注意, 这里面…
欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ if(b==) return a; return gcd(b,a%b); } O(logn) 裴蜀定理: 设 (a,b) = d,则对任意整数 x,y,有 d|(ax+by) 成立: 特别地,一定存在 x,y 满足 ax+by = d 等价的表述:不定方程 ax+by = c(a,b,c 为整数)…
A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2390    Accepted Submission(s): 1731 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Input 数据的第一行是一…
欧几里得和扩展欧几里得算法 题目: poj 1061 poj 2142 双六 扩展欧几里得算法详解 先说欧几里得算法:欧几里得算法辗转相除求\(gcd\).求\(a.b\)的\(gcd\),则利用的性质是:\(gcd(a,b)=gcd(b,a\%b)\),而\(gcd(a,0)=a\),这样,辗转除下去,当第二个参数为0,第一个参数就是最大公约数. int gcd(int a,int b){ while(b!=0){ int tmp = a%b; a = b; b = tmp; } return…
前言 扩展欧几里得算法是一个很好的解决同余问题的算法,非常实用. 欧几里得算法 简介 欧几里得算法,又称辗转相除法. 主要用途 求最大公因数\(gcd\). 公式 \(gcd(a,b)=gcd(b,a\%b)\) 公式证明 \(a\)可以表示成\(a=kb+a\%b\)(\(k\)为自然数). 假设\(g\)是\(a,b\)的一个公约数,则有\(g|a, g|b\). \(\because a\%b=a-kb\), \(\therefore g|(a\%b),\therefore g\)是\(b…
UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * xi-1 + b ) MOD 10001, 求出x2,x4--x2T. 由于本题中的a和b是未知的,所以需要根据已知条件求出a和b,据说有人暴力枚举a和b然后过了. 所以我来换另一种方法. 其实我们可以枚举a,并根据x1,x3算出求出可行的b的值.如何做到呢? 首先我们已经知道 x2 = (a *…
拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd(int a,int b,int&d,int&x,int&y) { ,y=; else gcd(b,a%b,d,y,x),y-=x*(a/b); } int main() { int a,b,d,x,y; scanf("%d%d",&a,&b); g…
void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 string getNumString(int* num); //判断两个数字哪个大 int compare(string numAStr, string numBStr); //加法 string sum(string numAStr, string numBStr); //减法 string sub…
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return a;} int d=exgcd(b,a%b,x,y); int z=x;x=y;y=z-y*(a/b); return d; } 当d可以整除c时,一般方程ax+by=c的一组特解求法: 1.求ax+by=d的特解x0,y0 2.ax+by=c的特解为(c/d)x0,(c/d)y0 上述方程的通解:(c/d)…
http://oj.jxust.edu.cn/contest/Problem?id=1561&pid=5 题目描述 经历了上次的惨败,兔子一直心怀不满,又策划了一场比赛,但这次不再是简单的跑步比赛了,他们将在一个神奇的场地进行一次奇妙的比赛: 这个场地是线性的.它拥有一种神奇的功能,表面看起来它只有L米长,其实是无限的!——当你跑到尽头再往前行进时你会发现,你将从另一端跑出来! 兔子制定的游戏规则很简单:正方向为从右往左,兔子和乌龟同时在不同位置开始朝正方向跑,如果兔子在某一时刻与乌龟相遇(在同…
题解: 题目背景 151006 T1 题目描述 Picks 喜欢电路.这天他在研究元电路的时候,需要一个阻值为 (p/q)Ω 的电阻,然而他家中只有一大堆电阻为 1Ω 电阻.由于技术问题,Picks 每次只能把一个电阻串联或并联进整个电路.而 Picks 拿着这么大一堆电阻觉得很浪费,于是他找到你,希望你能告诉他最少用多少个电阻才能拼出他所需要的电阻. 输入格式 输入一行,为两个正整数 P 和 Q . 输出格式 输出一行一个整数,即最少要用的电阻个数. 样例数据 1 输入 [复制] 3 2 输出…
欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一种快速计算最大公约数的算法,对于任意的两个数\((a,b)\),其最大公约数表示为\(gcd(a,b)\),根据欧几里得算法,\(gcd(a,b)=gcd(b,a\%b)\).证明如下: 如果\(b>a\),显然成立:因此只需考虑\(b<a\)的情况.根据初等数学知识,可知\(a,b\)的关系可表…
说在开头. 出于对欧几里得的尊重,先简单介(cou)绍(ge)一(zi)下(shu).. 欧几里得,古希腊人,数学家.他活跃于托勒密一世时期的亚历山大里亚,被称为“几何之父”. 他最著名的著作<几何原本>是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书. 欧几里得也写了一些关于透视.圆锥曲线.球面几何学及数论的作品.(https://baike.baidu.com/item/欧几里得/182343?fr=aladdin) --------------------…
//Accepted 164 KB 16 ms //拓展欧几里得 //m=a1*x+b1 --(1) //m=a2*(-y)+b2 --(2) //->a1*x+a2*y=b2-b1 //由欧几里得算法可得上式的解 //由a*x+b*y=gcd(a,b) //可得a(x+b)+b(y-a)=gcd(a,b) //所以最小正整数解x=(x%b+b)%b; //现考虑由(1)(2)两式得到的解m //有x=m mod (a1*a2/gcd(a1,a2)) //m是最小正整数解,m+a1*a2/gcd…
青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会…
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+D[i-2]); 所以根据乘法原理,答案就是Cnm * D(n-m) 接下来就是怎么求组合数的问题了 由于n≤1000000,因此只能用O(n)的算法求组合,这里用乘法逆元(inv[])来辅助求组合数 即 Cnm = n! / ((n-m)! * m!) = fac[n]*inv[n-m]*inv[…
原文地址:https://www.cnblogs.com/zyb993963526/p/6783532.html 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB穿过多少个整点. 思路: 做了这道题之后对于扩展欧几里得有了全面的了解. 根据两点式公式求出直线 ,那么ax+by=c 中的a.b.c都可以确定下来了. 接下来首先去计算出一组解(x0,y0),因为根据这一组解,你可以写出它的任意解,其中,K取任何整数. 需要注意的是,这个 a' 和 b' 是很重要…
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; ll gcd(ll a,ll b){…
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by ev…
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这…
污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][Status][Discuss] Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数…
zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可做(人傻),然而BC也在搞...于是开始做第四道: 大约1h10' B题A了..1h30' C题也A了= =: 后来去搞F,公式推得很快,并且很自信是对的..于是筛!搞!,一交 TLE?!,然后意识到 结果可以直接筛,可以省去搞得过程 不虚,改!!然后时间到了...毫无贡献的傻逼一个....可怕.…