POJ 2065 SETI [高斯消元同余]】的更多相关文章

题意自己看,反正是裸题... 普通高斯消元全换成模意义下行了 模模模! #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; ; inline int read(){ ,f=; ;c=getchar();} +c-';c=getchar();} return x*f; }…
看题就知道要使用高斯消元求解! 代码如下: #include<iostream> #include<algorithm> #include<iomanip> #include<cmath> #include<cstring> using namespace std; ][],p,ans[]; ]; int pows(int a,int b) { ; while(b){ ) ans=(ans*a)%p; b>>=; a=(a*a)%p;…
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equiv B[1](mod\ p)\] \[A_0*2^0+A_1*2^1+\ldots+A_{n-1}*2^{n-1}\equiv B[2](mod\ p)\] \[\ldots\ldots\ldots\] \[A_0*n^0+A_1*n^1+\ldots+A_{n-1}*n^{n-1}\equiv…
题意: 给出mod的大小,以及一个不大于70长度的字符串.每个字符代表一个数字,且为矩阵的增广列.系数矩阵如下 1^0 * a0 + 1^1 * a1 + ... + 1^(n-1) * an-1 = f(1) 2^0 * a0 + 2^1 * a1 + ... + 2^(n-1) * an-1   = f(2) ........ n^0 * a0 + n^1 * a1 + ... + n^(n-1) * an-1  = f(n) 快速幂取模下系数矩阵 #include <cstdio> #i…
题目链接 题意: 输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,'*'对应0,‘a’对应1,‘b’对应2.... 例如str[] = "abc", 那么说明 n=3, 字符串所对应的数列为1, 2, 3. 题目中定义了一个函数: a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)(mod p), f(1) = str[0] = a = 1; a0*2^0 + a1*2^1+a2*2^2+....…
题目链接:https://vjudge.net/contest/276374#problem/B 题目大意: 输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,'*'对应0,‘a’对应1,‘b’对应2...,同时题目定义了一个函数:a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)(mod p), f(1) = str[0] = a = 1; a0*2^0 + a1*2^1+a2*2^2+........+a…
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我自己想了想,就用了高斯消元 + 费马小定理.因为%p是质数,所以很容易就用上了费马小定理,就是在除法的时候用一次就好了.还有就是两个模数相乘还要模一次. #include <cstdio> #include <cstdlib> #include <cstring> #inc…
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的编号. 此题注意最后结果要调整到3-9之间. 思路: 非常easy想到高斯消元. 可是是带同余方程式的高斯消元,開始建立关系的时候就要MOD 7 解此类方程式时最后求解的过程要用到扩展gcd的思想,举个样例,假设最后得到的矩阵为:     1  1   4     0  6   4    则6 * X2 %…
N-dimensional Sphere Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 668    Accepted Submission(s): 234 Problem Description In an N-dimensional space, a sphere is defined as {(x1, x2 ... xN)| ∑(…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2065 题意概括 多组数据,首先输入一个T表示数据组数,然后,每次输入一个质数,表示模数,然后,给出一个长度为n的字符串,第i个位置的字符ch表示f(i)= ch == '*' ? 0 : ch-'a'+1 求解同余方程:(模数为p) f(1)=10a0+11a1+...+1n-1an-1 f(2)=20a0+21a1+...+2n-1an-1 f(3)=30a0+31a1+...+3n-1an-1…
UVA 1563 - SETI option=com_onlinejudge&Itemid=8&page=show_problem&category=520&problem=4338&mosmsg=Submission+received+with+ID+14015694" target="_blank" style="">题目链接 题意:依据题目那个式子.构造一个序列,能生成对应字符串 思路:依据式子能构造出n…
(a1 * 1^0  +   a2 * 1^1  + ...  an * 1^n - 1) % P = f1 .... (a1 * n^0  +   a2 * n^1  + ...  an - 1 * n ^ n - 1) % P = fn 消元中A[k][i] % A[i][i]不为0时将A[k][i]变为他们的最小公倍数,即整行都乘上lcm(A[k][i], A[i][i]) / A[k][i](不过后来看题解发现有更巧妙的方法不用求lcm),回代求解时使用逆元 #include<cstdi…
由于数据量不大,所以这题有很多解法. 我用的是高斯消元化为逆矩阵解决的…… 代码如下: #include<stdio.h> #include<iostream> using namespace std; ][]={ {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,}, {,,,,,,,,,} },ans[]; int main()…
首先...使用abs()等数学函数的时候,浮点数用#include<cmath>,其它用#include<cstdlib>. 概念: [矩阵的秩] 在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目.类似地,行秩是A的线性无关的横行的极大数目. 此题如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择,既1 << n 对于r以下的行,必定全是0,那么如果a[i][n]!=0 必然出现矛盾,于是判定无解. #include <iostrea…
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5418 Accepted: 2022 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任…
着实被批评了一下,自己的数论确实太烂了. 题意:一条路上,有n个炸弹,给出每个炸弹的位置,一次走一步的概率是p,走两步的概率是1-p.求安全走完的概率. 定义dp[i] = dp[i-1]*p + dp[i-2]*(1-p) 由于路很长,不能递推. n个炸弹就把路分成了n+1段路,计算走完一段路安全的概率就行,然后相乘. | p ,  1 | | dp[i-1],dp[i-2] | * | 1-p,0 |   = | dp[i],dp[i-1] | 求安全走完一段长为L路的概率,就将矩阵乘L次即…
和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <bitset> using namespace std; typedef long lon…
一.题目  SETI 二.分析 给定一个模数,一串字符串,字符串长度为N,相当于是N个方程的答案,而这N个方程中有N个未知数,要求的就是这N个未知数的值,很显然的高斯消元,遇到模数和除法,用逆元就好. 三.AC代码 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <cmath>…
题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求出保存在矩阵中,根据字符串的长度len,那么就可以得到len行的矩阵,利用高斯消元解决这个线性方程组 #include <cstdio> #include <cstring> #include <iostream> using namespace std; ; //a[i]…
POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something…
题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最后均为0. 思路:高斯消元,记录变元个数,枚举变元. int a[N][N],ans[N]; vector<int> b; int Gauss() { b.clear(); int i,j=1,k,t; for(i=1;i<=20;i++) { for(k=j;k<=20;k++) i…
题目链接 题意: 输入提供9个钟表的位置(钟表的位置只能是0点.3点.6点.9点,分别用0.1.2.3)表示.而题目又提供了9的步骤表示可以用来调正钟的位置,例如1 ABDE表示此步可以在第一.二.四.五个钟调正,如原来是0点,那么调正后为3点.问经过那些步骤可以导致9个钟的位置都在0点. 分析: 这个本来是一个高斯消元的题目,但是 听说周期4不是素数, 求解过程中不能进行取余.因为取余可能导致解集变大. 不过也有用高斯消元做的,下面是用高斯消元的分析 ” Discuss也有人讨论了,4不是质数…
开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任务是,计算有多少种可以达到指定状态的方法.(不计开关操作的顺序) Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第…
[题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了数字,周围四格都会发生变化,变化即做一次与1的异或运算,输出每个格子的操作次数. [题解] 高斯消元练手题,对于每个格子的最终情况列一个方程,一共三十个方程三十个未知数,用高斯消元求解即可. [代码] #include <cstdio> #include <algorithm> #in…
题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详解 代码: #include<queue> #include<cstring> #include<set> #include<map> #include<stack> #include<cmath> #include<vector&…
思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态为:u[1]*mp[1][i]^u[2]*mp[2][i]....^u[n]*mp[n][i](或者改为相加 % 2).显然,前式等于B[i],所以,问题转化为了求u的解个数:MP*U = B.注意MP矩阵的写法. 关于矩阵: r(A) = r(A,b)           有解 r(A) = r(…
http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是要处理自由变元,如果自由变元为0,那么刷法是唯一的,如果有多个自由变元,那么可以有多种刷法,需要枚举处理. 借鉴了kuangbin大神的高斯消元模板,写得真的是好. #include<iostream> #include<algorithm> #include<cstring&g…
http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1表示按,0表示不按. 思路:每个开关最多只按一次,因为按了2次之后,就会抵消了. 可以从结果出发,也就是全灭状态怎么按能变成初始状态. 用3*3来举个例子,$X\left ( i,j \right )$表示这些开关是按还是不按,那么对于第一个开关,对它有影响的就只有2.4这两个开关,所以它的异或方程…
题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题解:首先可以用高斯消元来做,对于每个点,我们列出一个方程,左边是某个点和它相邻的点,他们的异或值等于右边的值(灯亮为1 ,灯灭为0),然后求一个异或高斯消元就可以了.可以用bitset优化,或者__int128优化(其实unsigned就可以了). 还可以枚举第一行的按开关的状态共有1<<6中状态…
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http://poj.org/problem?id=1753 http://poj.org/problem?id=3185 这几个题目都类似,都可以使用高斯消元来求解一个模2的01方程组来解决. 有时候需要枚举自由变元,有的是判断存不存在解 POJ 1222 EXTENDED LIGHTS OUT 普通的问题.…