J - 青蛙的约会(扩展欧几里得)】的更多相关文章

青蛙的约会Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 120482 Accepted: 25449Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.…
青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1061 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很…
http://172.20.6.3/Problem_Show.asp?id=1371 题意是两个青蛙朝同一个方向跳 http://www.cnblogs.com/jackge/archive/2013/04/22/3034925.html详细的题解,大概是网上能看到的最简单易懂的扩展欧几里得讲解了   代码 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i…
一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们…
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写,结果发现会求出来小数,而且按照追击问题写的话,一圈就能相遇,但是!青蛙的步数可没有小数,而且青蛙是跳跃的,显然不能在空中相遇吧. 所以咧,先列出一个追击的式子 ,设步数为 t ,整数为K(转了K圈以后他们才到同一个地方) t * m + x = t * n + y + k * L ===> t *…
题目链接:http://poj.org/problem?id=1061 其实欧几里得我一直都知道,只是扩展欧几里得有点蒙,所以写了一道扩展欧几里得裸题. 欧几里得算法就是辗转相除法,求两个数的最大公约数,算法是,a,b的最大公约数是gcd(b,a%b)然后不断递归下去,直到b=0 转换成c++语言就是 int ex_gcd(int a,int b) { )return a; return ex_gcd(b,a%b); } 扩展欧几里得就是假设c=gcd(a,b);则有a*x+b*y=c; 然后我…
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; ll exgcd(ll a, ll b, ll&x, ll&y) { ) { x = ;…
每日做智推~ 一看就是一道数学题. 再看是一道公约数的题目. 标签是中国孙子定理. 题解是扩展欧几里得 (笑) 一开始没看数据范围 只有50分 开一个longlong就可以了 #include<cstdio> #define ll long long using namespace std; ll x, y, m, n, l; ll ans, x1, y1; ll exgcd(ll a, ll b, ll &x1, ll &y1) { if (!b) { x1 = ; y1 =…
/** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运动,每一次运动分别为m,n米:问第几次运动后相遇,即在同一位置. 如果永远无法相遇输出Impossible. 思路: 设:次数为t: 圈总长为: L A位置:(x+m*t)%L; B位置: (y+n*t)%L; 如果: (x+m*t)%L = (y+n*t)%L 存在碰面: 暴力枚举t.太大了: 保…
青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总…
模板题,这题有一点需要注意,因为要求非负,ax=b(mod L) 得保证 a>=0 #include <stdio.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <string.h> using namespace std; typedef long long LL; const int INF=0x…
青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会…
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; ll gcd(ll a,ll b){…
POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; void exgcd(ll a, ll b, ll& d, ll&…
题意:已知青蛙1位置x,速度m,青蛙2位置y,速度n,纬线长度为l,求他们相遇时最少跳跃次数. 思路:设最小跳跃次数为k,则(x + k*m) - (y + k*n) = q*l:经过整理得到k*(n-m) + q*l = x - y:此时k和l为变量.欧几里得扩展中有线性方程a*x+b*y = c,当且仅当c是gdc(a,b)的整数倍的时候,所以这个题我们可以使用这个算法求得一个x0(x0已经被乘以了倍数),故x0为满足题意的一个解,X的解系为x0 + k[b/gcd(a,b)](具体证明不在…
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这…
https://vjudge.net/contest/218366#problem/J 第一步追及公式要写对:y+nk-(x+mk)=pL => (n-m)k+lp=x-y 可以看出扩展欧几里得原型,这里注意扩展欧几里得求出的是任意解,非最优,要推出最小解k. (n-m)x+ly=gcd => (n-m)(x*(x-y)/gcd) + l*y*(x-y)/gcd = x-y 则k = x*(x-y)/gcd(某一解非最小),由于k每次可转移t = l/gcd 最小解为(k%t+t)%t. #i…
题目链接:http://poj.org/problem?id=1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 131879   Accepted: 29100 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的…
题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳到一格才行,所以说 \(x+mt=y+nt(mod l) \) \((x-y)+(m-n)t=0(mod l)\) \((m-n)t+ls=(y-x)  s属于整数集\) 令a=n-m,b=l,c=gcd(a,b),d=x-y 则有\( at+bs=d\) 扩展欧几里得求解. 设c=gcd(a,b)…
题意:两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫做青…
http://poj.org/problem?id=1061 第一遍的写法: #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; long long x,y,m,n,l,j1,j2; long long gcd(long long a,long long b) { ?a:gcd(b,a%b); } void e…
传送门 对于数论只会gcd的我,也要下定决心补数论了 列出方程 (x + t * m) % l = (y + t * n) % l 那么假设 这两个式子之间相差 num 个 l,即为 x + t * m = y + t * n + num * l 经过化简得 (n - m) * t + l * num = x - y 那么可以用扩展欧几里得求出结果 ——代码 #include <cstdio> #define LL long long inline void exgcd(LL a, LL b,…
青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:132162   Accepted: 29199 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能…
一直在WA,后来我发现我把东西看反了…… [题目大意] 给出一个长度为L的环状坐标轴,两个点开始时位于(X,0).(Y,0).每次两点分别往右边移动m和n,问能否相遇? [思路] 由题意,可得: X+mt=Y+nt(mod L) (X+mt)-(Y+nt)=L*k (n-m)t+L*k=X-Y. 可以用扩展欧几里得来做.具体来说,显然要满足n-m和L的最大公约数(记为d)要整除X-Y,否则无解.这个可以在扩展欧几里得中求出. 式子可以化简为:[(n-m)/d]*t+(L/d)*k=(X-Y)/d…
关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ********Update9.28********** 刚刚我们求出的是一组特值,那么如何求通值? 约定:设x0,y0为一组特解,t为任意整数,设a>b(不行再交换) 那么有 x=x0+b/gcd*t y=y0-a/gcd*t ******************************* 奉上三道例题: E…
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人…
1204 大体推推 会出来这个式子 x(x-1) = k*n;n = p*q ;x(x-1)%(p*q)==0; 因为p,q都为素数 那也就是说x和x-1中必定包含这两个数 而且一个里面只能有一个 不然会大于等于N 当上面的k=0时 x=0||x=1 这是固定的 然后 {x-pi=0; (x-1)-qi = 1}化这一组 就会变成pi-qi=1 这就变成了扩展欧几里得 必定存在一组解 解出来带入一下 注意一下负数就可以了 下一组同样这样计算 {x-pi=1; (x-1)-qi = 0} #inc…
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11672&courseid=0 题目大意: 给定任意一个N,(N<=109)求斐波那契—卢卡斯数列的前两项A和B.(先满足B最小再满足A最小,A<=B) 斐波那契—卢卡斯数列是斐波那契数列的推广,斐波那契数列f[0]=0,f[1]=1,斐波那契—卢卡斯数列f[0]=A,f[…
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < a1, a2 ≤ 2·109,  - 2·109 ≤ b1, b2, L, R ≤ 2·109, L ≤ R). 题目思路: [数论][扩展欧几里得] 据题意可得同余方程组 x=b1(mod a1) 即 x=k1*a1+b1 x=b2(mod a2) x=k2*a2+b2 化简,k1*a1=k2*a2…
Root Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 34    Accepted Submission(s): 6 Problem Description Given a number sum(1≤sum≤100000000),we have m queries which contains a pair (xi,yi) a…