Spark学习笔记3:键值对操作】的更多相关文章

本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). 键值对(PaiRDD) 1.创建 #在Python中使用第一个单词作为键创建一个pairRDD,使用map()函数 pairs = lines.map(lambda x:(x.split(" ")[0],x)) 2.转化(Transformation) 转化操作很多,有reduceByK…
键值对 RDD 是 Spark 中许多操作所需要的常见数据类型.键值对 RDD 通常用来进行聚合计算.我们一般要先通过一些初始 ETL(抽取.转化.装载)操作来将数据转化为键值对形式.键值对 RDD 提供了一些新的操作接口(比如统计每个产品的评论,将数据中键相同的分为一组,将两个不同的 RDD 进行分组合并等).我们也会讨论用来让用户控制键值对 RDD 在各节点上分布情况的高级特性:分区.有时,使用可控的分区方式把常被一起访问的数据放到同一个节点上,可以大大减少应用的通信开销.这会带来明显的性能…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   通过转换来自于其他RDD,如map,filter等 2.创建操作(creation operation):RDD的创建由SparkContext来负责. 3.转换操作(transformation operation):将一个RDD通过一定操作转换为另一个RDD. 4.控制操作(control o…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-core_2.10 的依赖 程序 找了一篇注释比较清楚的博客代码1,一次运行通过 import scala.Tuple2; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
目录 X-Cart 学习笔记(一)了解和安装X-Cart X-Cart 学习笔记(二)X-Cart框架1 X-Cart 学习笔记(三)X-Cart框架2 X-Cart 学习笔记(四)常见操作 五.常见操作 1.定义模版对象和引用模版 定义smarty变量 Smarty是一种模版语言,它会将*.php中定义模版对象输出到*.tpl模版中,显示到用户的面前. 定义smarty变量: $smarty->assign(template_variable, php_variable): 如何将定义的sma…
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> RDD是什么? 弹性分布式数据集(Resilient Distributed Dataset,简称 RDD) Spark 的核心概念 一个不可变的分布式对象集合 每个 RDD 都被分为多个分区运行在集群的不同节点上 RDD…
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的spark搭建后是否真正可以使用了 1.今天就和大家写一个计算π的spark代码 下面我把已经写好了的代码放在下面,大家可以借以参考一下 package day02 import org.apache.spark.{SparkConf, SparkContext} import scala.math.r…
golang学习笔记16 beego orm 数据库操作 beego ORM 是一个强大的 Go 语言 ORM 框架.她的灵感主要来自 Django ORM 和 SQLAlchemy. 目前该框架仍处于开发阶段,可能发生任何导致不兼容的改动. 官方文档:https://beego.me/docs/mvc/model/overview.md 已支持数据库驱动: MySQL:github.com/go-sql-driver/mysql PostgreSQL:github.com/lib/pq Sql…
Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明:本文为博主原创文章,未经博主允许不得转载. Spark GraphX是一个分布式图处理框架,Spark GraphX基于Spark平台提供对图计算和图挖掘简洁易用的而丰富多彩的接口,极大的方便了大家对分布式图处理的需求.Spark GraphX由于底层是基于Spark来处理的,所以天然就是一个分布式…
目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受众 起源和发展 Spark学习笔记0--简单了解和技术架构 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 什么是Spark Spark 是一个用来实现快速而通用的集群计算的平台. 扩展了广泛使用的MapReduce 计算模型 能够在内存中进行计算 一个统一的框架…
Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后在解压好的maven客户端的文件夹内打开conf文件夹,修改里面的settings.xml文件 然后只需要修改这一行就可以了 ,把这一行替换成你自己本地的maven仓库的路径 最好是自己有一个完整点的maven仓库,然后把这个修改过的xml文件放到maven仓库下 到这里,你本地的maven客户端环…
机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbh…
本章对Redis服务器的数据库实现进行介绍,说明Redis数据库相关操作的实现,包括数据库中键值对的添加.删除.查看.更新等操作的实现:客户端切换数据库的实现:键超时相关功能的实现.键空间事件通知等. 以上这些功能,键空间事件通知是在src/notify.c中实现的,其他功能都是在src/db.c中实现的. 在redis.h中定义的redisServer数据结构,定义了redis服务器相关的所有属性,其中就包含了数据库的结构: struct redisServer { ... redisDb *…
键值对 RDD是 Spark 中许多操作所需要的常见数据类型 键值对 RDD 通常用来进行聚合计算.我们一般要先通过一些初始 ETL(抽取.转化.装载)操作来将数据转化为键值对形式. Spark 为包含键值对类型的 RDD 提供了一些专有的操作. 1.创建Pair RDD val input = sc.parallelize(List(1, 2, 3, 4)) val pairs = input.map(x => (x+1, x)) for (pair <- pairs){ println(p…
键值对RDD通常用来进行聚合计算,Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为pair RDD.pair RDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口. Spark中创建pair RDD的方法:存储键值对的数据格式会在读取时直接返回由其键值对数据组成的pair RDD,还可以使用map()函数将一个普通的RDD转为pair RDD. Pair RDD的转化操作 reduceByKey()  与reduce类似 ,接收一个函数,并使用该函数对值进行合并,…
键值对RDD是Spark中许多操作所需要的常见数据类型. “分区”是用来让我们控制键值对RDD在各节点上分布情况的高级特性.使用可控的分区方式把常在一起被访问的数据放在同一个节点上,可以大大减少应用的通信开销,带来明显的性能提升. 4.1 动机 Spark为pair RDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口. 4.2 创建Pair RDD 当需要把一个普通的RDD转为pair RDD时,可以调用map()函数来实现.下例为如何将由文本行组成的RDD转换为以每行的第一个单词为键…
1 简述 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD. 2 创建PairRDD 2.1 在sprk中,很多存储键值对的数据在读取时直接返回由其键值对数据组成的PairRDD. 2.2 可以调用map()函数,将一个普通的RDD转换为PairRDD. scala 版: 使用第一个单词作为作为键创建出一个PairRDD val pairs = lines.map(x => s.split(" ")(0), x) java版: 同样是使用第一…
1.pair RDD的简介 Spark为包含键值对类型的RDD提供了一些专有的操作,这些RDD就被称为pair RDD 那么如何创建pair RDD呢? 在不同的语言中有着不同的创建方式 在python和Scala语言中创建的方式都是差不多的. 在java语言中: java用户还需要调用专门的Spark函数mapToPair()来创建pair RDD.例如: //映射,word -> (word,1) JavaPairRDD<String,Integer> rdd3 = rdd2.map…
PHP 中的数组实际上是一个有序映射.映射是一种把 values关联到 keys 的类型.此类型在很多方面做了优化,因此可以把它当成真正的数组,或列表(向量),散列表(是映射的一种实现),字典,集合,栈,队列以及更多可能性.由于数组元素的值也可以是另一个数组,树形结构和多维数组也是允许的. 在PHP中,数组的每个元素都是由“键=>值”组成的,通过元素的键来访问对应的键的值.“关联数组”指的是键名为字符串的数组,“索引”和“键名“指的是同一样东西.”索引“多指数组的数字形式的下标.使用数组的处理函…
1.首先在Hbase中建立一张表,名字为student 参考 Hbase学习笔记——基本CRUD操作 一个cell的值,取决于Row,Column family,Column Qualifier和Timestamp Hbase表结构 2.往Hbase中写入数据,写入的时候,需要写family和column build.sbt libraryDependencies ++= Seq( "org.apache.spark" %% "spark-core" % "…
[前面的话] 前段时间在学习和玩java web相关的东西,对于这些技术,一边学习,一边做东西,一边总结,希望可以一边成长和有所收获.有时总是思考太多反而成为了前进的阻力,所以对于生活还是简单一些,不以最坏的恶意去揣摩别人,但是对于技术还是要认真对待,一点都马虎不得. 前段时间做了一下开发,最近马上也要过年了,时间相对就比较多了,所以又回过头来看看书,巩固一下基础知识,做一些笔记,看看自己的思维,主要目的是为了自己积累,所以都是很基础.很基础的知识,请自行选择.如果看到这里要走了,祝新年快乐,也…
本章主要介绍Spark如何处理键值对.K-V RDDs通常用于聚集操作,使用相同的key聚集或者对不同的RDD进行聚集.部分情况下,需要将spark中的数据记录转换为键值对然后进行聚集处理.我们也会对键值对RDD的高级特性——分区进行讨论,用户可以控制RDD在节点间的布局,确保数据在同一机器上面,减少通信开销,将极大地提高效率.数据分区的选择与单机程序数据结构的选择一样,都能对程序的性能产生极大的影响. 主要分为以下几个章节: 创建PairRDD Transformation on Pair R…
//此系列博文是<第一行Android代码>的学习笔记,如有错漏,欢迎指正! 这一次我们来试一试升级数据库,并进行数据库的CRUD操作,其中, C 代表添加(Create) ,R 代表查询(Retrieve) ,U代表更新(Update) ,D代表删除(Delete) .每一种操作各自对应着一种 SQL命令.前面我们已经知道,调用 SQLiteOpenHelper的 getReadableDatabase()或 getWritableDatabase()方法是可以用于创建和升级数据库的, 不仅…
1.调度 分为FIFO和FAIR两种模式 创建调度池:sc.setLocalProperty("spark.scheduler.pool", "pool6") 终止调度池:sc.setLocalProperty("spark.scheduler.pool6", null) 配置调度池: 通过conf/fairscheduler.xml sparkConf.set("spark.scheduler.allocation.file"…
1.File类:对硬盘上的文件和目录进行操作的类.    File类是文件和目录路径名抽象表现形式  构造函数:        1) File(String pathname)       Creates a new File instance by converting the given pathname string into an abstract pathname. 2)File(File parent, String child)       Creates a new File i…
说明(2018-9-1 11:20:46): 1. 上班三个月了,累的一逼,真的是钱少事多离家远,每天早上六点起,晚上八点回.哎,少壮不努力啊! 2. 三个月没写博客了,上一篇已经是5.29的了,真的是整整三个月了,这期间一点C#的东西都没看,代码也没敲,估计又得重新来一遍了. 3. 公司电脑不能自己装软件,所以只能用VBA编程了,昨天看到同事在写VBA的作业,就要了一份过来准备周末写完,周一去装个逼.回家下载下来之后,眉头一皱,发现事情并不简单!我现在连怎么打开文件都要查查资料! 4. 么得办…