spark转换集合为RDD】的更多相关文章

SparkContext可以通过parallelize把一个集合转换为RDD def main(args: Array[String]): Unit = { val conf = new SparkConf(); val list = List(1, 2, 3, 4, 5,6); conf.set("spark.master", "local") conf.set("spark.app.name", "spark demo")…
Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 三.使用本地文件和HDFS创建RDD 3.1 Java---使用本地文件创建RDD 3.2 Scala---使用本地文件创建RDD 四.RDD持久化原理 五.不使用RDD持久化的问题的原理 六.RDD持久化工作的原理 七.RDD持久化策略 八.如何选择RDD持久化策略 一.创建RDD 二.并行化集…
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2.RDD属性 1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…
RDD(Resilient Distributed Dataset)是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作.这对于迭代运算比…
一.RDD的概述 1.1 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都…
前言:Spark编程模型两个主要抽象,一个是弹性分布式数据集RDD,它是一种特殊集合,支持多种数据源,可支持并行计算,可缓存:另一个是两种共享变量,支持并行计算的广播变量和累加器. 1.RDD介绍 Spark大数据处理平台建立在RDD之上,RDD是Spark的核心概念,最主要的抽象之一.RDD和Spark之间的关系是,RDD是一种基于内存的具有容错性的集群抽象方法,Spark是这个抽象方法的实现. RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spa…
预览 在高层次上,每一个Spark应用(application)都包含一个驱动程序(driver program),该程序运行用户的主函数(main function),并在集群上执行各种并行操作. Spark提供的主要抽象是一个弹性分布式数据集(resilient distributed dataset,简称RDD),它是在集群节点间进行分区的元素集合,可以并行操作.RDD是通过Hadoop文件系统中的文件创建或者由驱动程序中现有的集合转换得到的,用户可以要求Spark将RDD持久化到内存中,…
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群中只能有一个资源调度,如果有两个资源调度的话,master和resourcemanager之间是不通信的,master分配某个资源,resourcemanager是不知道的一个application对应一个driver,driver是用来分配任务的 流程示意分布式文件系统(File system)加…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
Spark 允许用户为driver(或主节点)编写运行在计算集群上,并行处理数据的程序.在Spark中,它使用RDDs代表大型的数据集,RDDs是一组不可变的分布式的对象的集合,存储在executors中(或从节点).组成RDDs的对象称为partitions,并可能(但是也不是必须的)在分布式系统中不同的节点上进行计算.Spark cluster manager根据Spark application设置的参数配置,处理在集群中启动与分布Spark executors,用于计算,如下图: Spa…
创建RDD: 1:使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造测试数据,来测试后面的spark应用流程. 2:使用本地文件创建RDD,主要用于临时性地处理一些储存了大量数据的文件 3:使用HDFS文件创建RDD,应该是最常用的生产环境处理方式,主要可以针对HDFS上储存的大数据,进行离线处理操作. //创建SparkConf SparkConf conf = new SparkConf() .setAppName=("//跟类名一样")…
一 简介 spark核心是RDD,官方文档地址:https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds官方描述如下:重点是可容错,可并行处理 Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault-tolerant colle…
我的代码实践:https://github.com/wwcom614/Spark 1.RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集. 2.RDD在抽象上来说是一种元素集合,包含了数据.它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作.(分布式数据集) 3.RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建:有时也可以通过应用程序中的集合来创建. 4…
Spark编程模型(RDD编程模型) 下图给出了rdd 编程模型,并将下例中用 到的四个算子映射到四种算子类型.spark 程序工作在两个空间中:spark rdd空间和 scala原生数据空间.在原生数据空间里, 数据表现为标量(即scala基本类型,用橘 色小方块表示).集合类型(蓝色虚线 框) 和持久存储(红色圆柱).…
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> RDD是什么? 弹性分布式数据集(Resilient Distributed Dataset,简称 RDD) Spark 的核心概念 一个不可变的分布式对象集合 每个 RDD 都被分为多个分区运行在集群的不同节点上 RDD…
一.弹性分布式数据集 1.弹性分布式数据集(RDD)是spark数据结构的基础.它是一个不可变的分布式对象的集合,RDD中的每个数据集都被划分为一个个逻辑分区,每个分区可以在集群上的不同节点上进行计算.RDDs可以包含任何类型的Python,Java或者Scala对象,包括用户自定义的类. 2.正常情况下,一个RDD是一个只读的记录分区集合.RDDs可以通过对稳定存储数据或其他RDDs进行确定性操作来创建.RDD是一个可以在并行操作期间自动容错的元素的集合.发生错误之后可以进行重复的计算 3.创…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题第二篇文章,我们来看spark非常重要的一个概念--RDD. 在上一讲当中我们在本地安装好了spark,虽然我们只有local一个集群,但是仍然不妨碍我们进行实验.spark最大的特点就是无论集群的资源如何,进行计算的代码都是一样的,spark会自动为我们做分布式调度工作. RDD概念 介绍spark离不开RDD,RDD是其中很重要的一个部分.但是很多初学者往往都不清楚RDD究竟是什么,我自己也是一样,我在系统学习s…
Spark Streaming揭秘 Day8 RDD生命周期研究 今天让我们进一步深入SparkStreaming中RDD的运行机制.从完整的生命周期角度来说,有三个问题是需要解决的: RDD到底是怎么生成的 具体执行的时候和Spark Core上的执行有所不同 运行之后对RDD如何处理,怎么对已有的RDD进行管理 今天主要聚焦于第一个问题. 从DStream开始 DStream类的注释很明确的说明了,DStream中包含以下内容: DStream依赖的其他DStream(第一个DStream是…
1.mapValus(fun):对[K,V]型数据中的V值map操作(例1):对每个的的年龄加2 object MapValues { def main(args: Array[String]) { val conf = new SparkConf().setMaster("local").setAppName("map") val sc = new SparkContext(conf) val list = List(("mobin",22),…
在从WordCount看Spark大数据处理的核心机制(2)中我们看到Spark为了支持迭代和交互式数据挖掘,而明确提出了内存中可重用的数据集RDD.RDD的只读特性,再加上粗粒度转换操作形成的Lineage,形成了它独立的高效容错机制. RDD的粗粒度的转换是否有足够的表达能力,来支持多种多样的应用需求呢?先看看RDD究竟有哪些API,然后看它们如何模拟Google经典的MapReduce和图数据处理框架Pregel. RDD的API 转换 def map[U](f: T => U): RDD…
分别观察一下集合与算子的sortBy()的参数列表 普通集合的sortBy() RDD算子的sortBy() 结论:普通集合的sortBy就没有false参数,也就是说只能默认的升序排. 如果需要对普通集合中的元素需要升序排怎么办? 如图所示,我这调用的sortby()是List集合的方法了,不是算子,所以不能加false参数指定降序排,只能默认的升序排了,但是用reverse()反转就能达到一样的效果. 或者使用takeRight()方法取后十个也一样,注意的是后十个也是按升序排的…
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Application:基于Spark的用户程序,包含了一个driver program和集群中多个executorDriver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver programExecutor:为某App…
总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pyspark库为例. RDD 的操作函数(operation)主要分为2种类型 Transformation 和 Action,如下图: Transformation 操作不是马上提交 Spark 集群执行的,Spark 在遇到 Transformation 操作时只会记录需要这样的操作,并不会去执行,…
一.Spark 为什么比 MapReduce 要高效? 举一个例子: select a.state,count(*),AVERAGE(c.price) from a join b on (a.id=b.id) join c on (a.itemId=c.itermId) group by a.state 如果是用 hive 来实现,那么多个此作业将会被转换成 3 个 job 每一个 job 有 一个 map 和一个 reduce,reduce的结果会存储在 hdfs 上 1.hdfs 数据的存储…
本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接触时候,总是感觉很诧异,不是太理解,现在回想起来主要原因是我接触的第一个flatMapValues的例子是这样的,代码如下: val rddPair: RDD[(String, Int)] = sc.parallelize(List(("x01", 2), ("x02"…
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数据分组的操作接口. 创建 Spark中有许多中创建键值对RDD的方式,其中包括 读取时直接返回键值对RDD 普通RDD转换成键值对RDD 在Scala中,可通过Map函数生成二元组 val listRDD = sc.parallelize(List(1,2,3,4,5)) val result =…
一.JdbcRDD与关系型数据库交互 虽然略显鸡肋,但这里还是记录一下(点开JdbcRDD可以看到限制比较死,基本是鸡肋.但好在我们可以通过自定义的JdbcRDD来帮助我们完成与关系型数据库的交互.这点和Hadoop需要借助sqoop等工具进行是有优势的!) 给出一个demo的参考链接:https://www.2cto.com/database/201705/635388.html 二.RDD依赖关系 1.窄依赖 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partitio…
其实你会发现很多概念都是基于RDD提出来的,比如分区,缓存这些操作的对象其实都是RDD:所以不要讲spark的分区,这其实很不专业,分区其实是属于RDD的概念(只有pair RDD才有分区概念) RDD在(一)已经介绍了RDD,本质上是数据的描述(检索条件)以及处理描述(算法):等待着Action调用之后将会根据数据描述来获取数据,然后再根据算法来处理获取到的数据.简单讲,RDD包含了两部分:一部分是本身定义了数据的描述:比如设置数据源inputRDD = sc.textFile("log.tx…
初次尝试用 Spark+scala 完成项目的重构,由于两者之前都没接触过,所以边学边用的过程大多艰难.首先面临的是如何快速上手,然后是代码调优.性能调优.本章主要记录自己在项目中遇到的问题以及解决方式,下篇会尝试调优方法.末尾会分享自己的学习资料,也供大多菜鸟第一次使用作为参考.由于自己项目中大量使用spark sql,所以下面的经验大多是和spark sql有关.同样下面也列出作为菜鸟在学习过程中的困惑以及踩的坑,还请大牛勿笑 ~_~ 如果有更好的方式解决,欢迎留言,一起学习. 1.常用场景…
上一节简单介绍了Spark的基本原理以及如何调用spark进行打包一个独立应用,那么这节我们来学习下在spark中如何编程,同样先抛出以下几个问题. Spark支持的数据集,如何理解? Spark编程中常用到的操作? 一.RDD基础 1.RDD简介 在上一节的组件图Spark Core中我们简单提到了对弹性分布式数据集:RDD(Resilient Distributed DataSet),它表示分布在多个计算节点上可以并行操作的元素集合,是Spark主要得编程抽象.一般我们广为熟知的数值类型是整…