梯度下降优化基本公式:\({\theta\leftarrow\theta-\eta\cdot\nabla_\theta{J(\theta)}}\) 三种梯度下降优化框架 这三种梯度下降优化框架的区别在于每次更新模型参数时使用不同的样本数. Batch Gradient Descent 批/全量梯度下降每次更新模型参数时使用全部的训练样本. \({\theta\leftarrow\theta-\eta\cdot\frac{1}{N}\sum_{i=1}^{N}\nabla_\theta{J({\t…
原文地址:https://www.jianshu.com/p/7a049ae73f56 梯度下降优化基本公式:\({\theta\leftarrow\theta-\eta\cdot\nabla_\theta{J(\theta)}}\) 一.三种梯度下降优化框架 这三种梯度下降优化框架的区别在于每次更新模型参数时使用不同的样本数. (一)Batch Gradient Descent 批/全量梯度下降每次更新模型参数时使用全部的训练样本. \({\theta\leftarrow\theta-\eta…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stochastic gradient descent,即随机梯度下降.是梯度下降的batch版本. 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本.我们每次更新都利用一个batch的数据,而非整个训练集.即: 其中,η为学习率,gt为x在t时刻的梯度. 这么做的好处在于: 当训…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
转自: https://zhuanlan.zhihu.com/p/22252270    ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/details/44001921   深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)   前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了. SGD…
参考自: https://zhuanlan.zhihu.com/p/22252270 常见的优化方法有如下几种:SGD,Adagrad,Adadelta,Adam,Adamax,Nadam 1. SGD SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 缺点: 1. 选择合适的learning rate 较难,对所有参数更新使用同样的learning rate. 2. 容易收敛到局部最优,并且在某些情况下可能被困在鞍点. 2. Momentum…
SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了.现在的SGD一般都指mini-batch gradient descent. SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: gt=∇θt−1f(θt−1) Δθt=−η∗gt…
1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局最优值:若为非凸函数,能够收敛到局部最优值 缺点: 由于每轮迭代都需要在整个数据集上计算一次,所以批量梯度下降可能非常慢 训练数较多时,需要较大内存 批量梯度下降不允许在线更新模型,例如新增实例. Stochastic G…
[转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam https://blog.csdn.net/u010089444/article/details/76725843 这篇博客格式不好直接粘贴,就不附原文了. 有几个点可以注意下,原文没有写的很清楚: 优化方法的作用是什么? 可以说,没有优化方法,机器学习模型一般一样可以执行,所以说它并不是必须的.但是优化方法可以动态调整学习率以及影响迭代中参数调整的方向和幅度,可以加速收敛,是对原方法的一种优化.…
SGD: 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了.现在的SGD一般都指mini-batch gradient descent. SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 其中,是学习率,是梯度. SGD完全依赖于当前ba…
有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速度慢,一个 epoch 只能更新一次模型参数. SGD 就是用来解决这个问题的,以每个样本的梯度作为更新方向,更新次数更频繁.但有两个缺点: 更新方向不稳定.波动很大.因为单个样本有很大的随机性,单样本的梯度不能指示参数优化的大方向. 所有参数的学习率相同,这并不合理,因为有些参数不需要频繁变化,而…
主要内容: 一.Mini-Batch Gradient descent 二.Momentum 四.RMSprop 五.Adam 六.优化算法性能比较 七.学习率衰减 一.Mini-Batch Gradient descent 1.一般地,有三种梯度下降算法: 1)(Batch )Gradient Descent,即我们平常所用的.它在每次求梯度的时候用上所有数据集,此种方式适合用在数据集规模不大的情况下. X = data_input Y = labels parameters = initia…
最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https://mooc.study.163.com/smartSpec/detail/1001319001.htm 神经网络最基本的优化算法是反向传播算法加上梯度下降法.通过梯度下降法,使得网络参数不断收敛到全局(或者局部)最小值,但是由于神经网络层…
参考: https://blog.csdn.net/u010089444/article/details/76725843 1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局最优值:若为非凸函数,能够收敛到局部最优值 缺点: 由于每轮迭代都需要在整个数据集上计算一次,所以…
Optimization 随机梯度下降(SGD): 当损失函数在一个方向很敏感在另一个方向不敏感时,会产生上面的问题,红色的点以“Z”字形梯度下降,而不是以最短距离下降:这种情况在高维空间更加普遍. SGD的另一个问题:损失函数容易卡在局部最优或鞍点(梯度为0)不再更新.在高维空间鞍点更加普遍 当模型较大时SGD耗费庞大计算量,添加随机均匀噪声时SGD需要花费大量的时间才能找到极小值. SGD+Momentum: 带动量的SGD,基本思想是:保持一个不随时间变化的速度,并将梯度估计添加到这个速度…
目录 Momentum Nesterov accelerated gradient NESTEROV 的另外一个方法? Momentum Momentum的迭代公式为: \[v_t = \gamma v_{t-1} + \eta \nabla_\theta J(\theta) \\ \theta=\theta-v_t \] 其中\(J(\cdot)\)一般为损失函数.我们知道,一般的梯度下降,是没有\(\gamma v_{t-1}\)这一项的,有了这一项之后,\(\theta\)的更新和前一次更…
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmsprop.sgd,效果最好的组合是:prelu+rmsprop.我的代码如下: # Simple example using recurrent neural network to predict time series values from __future__ import division, p…
1 神经传递的原理 人类的神经元传递及其作用: 这里有几个关键概念: 树突 - 接受信息 轴突 - 输出信息 突触 - 传递信息 将其延伸到神经元中,示意图如下: 将上图整理成数学公式,则有 y = activation function( x1*w1 + x2*w2 + x3*w3 + b ) 相应说明: x - 输入值,仿真输入神经元,上图中有:x1.x2.x3 w - 权重值,仿真输入神经元轴突,传送信息,上图中有:w1.w2.w3 b - 偏差值,仿真接受神经元树突,代表接受神经元容易被…
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代次数的增加,学习率应该越来越小,因为迭代次数增加后,得到的解应该比较靠近最优解,所以要缩小步长η,那么有什么公式吗?比如:,但是这样做后,所有参数更新时仍都采用同一个学习率,即学习率不能适应所有的参数更新. 解决方案是:给不同的参数不同的学习率 Adagrad法 假设N元函数f(x),针对一个自变量…
1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) - 权重初始化(Weight Initialization) - 正则化(Regularization:避免过拟合的一种技术) - 梯度检查(Gradient checking) 2)动态训练(Training dynamics)          - 跟踪学习过程 (Babysitting th…
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值,与y相减则是一个相对误差.之后再平方乘以1/2,而且当中 注意到x能够一维变量.也能够是多维变量,实际上最经常使用的还是多维变量. 我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候.应该是沿着梯度的反方向进行权重的更新.能够有效的找到全局的最优解. 这个θ的更新过…
课程主页:http://cs231n.stanford.edu/ _______________________________________________________________________________________________________________________________________________________ -Parameter Updates 解决的方法: *Momentum update 其实就是把x再加上mu*v(可以看作是下滑过…
Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU.使用文档在这:http://keras.io/,中文文档在这:http://keras-cn.readthedocs.io/en/latest/ ,这个框架是2015年流行起来的,使用中遇到的困惑或者问题可以提交到github:https://github.com/fchollet/keras. Keras主要包括14个模块包,可参见文档https:…
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2.4 全连接(full connection) 2.5 损失函数(softmax_loss) 2.6 前向传播(forward propagation) 2.7 反向…
原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html --------------------------------------------------------------------------------------------------------------- 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
转载地址 https://www.jianshu.com/p/aebcaf8af76e 基于随机梯度下降(SGD)的优化算法在科研和工程的很多领域里都是极其核心的.很多理论或工程问题都可以转化为对目标函数进行最小化的数学问题. 按吴恩达老师所说的,梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低点,用最快的方式(steepest)奔向最低的位置(minimum). SGD基本公式 动量(Momentum) 参考链接:https://distill.pub/2017…
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x…