Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 引用: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation…
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程,分割的文章次之,而定位的文章就少之又少了.这其中的缘由也很简单:识别目前来说已经不是什么难事了,所以容易写,但分割和定位却仍然是一个头疼不已的问题,不同场景方法不同,甚至同一场景也要结合多种图像处理方法,因此很难有通用的解决策略.在深度学习火起来之后,很多研究人员开始尝试用深度学习的特征提取能力来…
目标检测系列 --- RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation Tech report 1. Architecture: Region proposals: 使用selective search获取region proposals,对于每一幅图像获取约2000个region proposals,并将每一个proposal wrap到需要的size,论文中为224*2…
Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik UC Berkeley 丰富多级特征用于精准对象检测和语义分割 --------------------------------------------------------------------------------…
论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构,可实现准确的目标检测和语义分割 论文作者:Ross Girshick Jeff Donahue Trevor Darrell Jitendra Mali 论文地址:http://fcv2011.ulsan.ac.kr/files/announcement/513/r-cnn-cvpr.pdf RC…
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进行结合.该文的两个亮点:(1)将CNN应用到region proposals 用于对目标物体的定位.(2)对于较少数量的标签数据,先在规模较大的数据集上进行有监督的预训练,然后针对特定场景进行微调,发现性能提升的较大.R-CNN:region with CNN features 介绍 特征问题:视觉…
0 - 背景 该论文是2014年CVPR的经典论文,其提出的模型称为R-CNN(Regions with Convolutional Neural Network Features),曾经是物体检测领域的state-of-art模型. 1 - 相关知识补充 1.1 - Selective Search 该算法用来产生粗选的regions区域,在我的另一篇博文Selective Search for Object Recognition(理解)中进行详细讲解. 1.2 - 无监督预训练&有监督预训…
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红.既然convNet在图像分类任务上能取得好成绩,是不是也能放到目标检测任务上呢.本文就是用convNet解决目标检测任务的首次探索.在PASCAL VOC 2010上的mAP达到了53.7%. 方法 模型一共分为三个模块. (1)region proposals(区域推荐)).在一张整图上面产生很…
论文网址: https://arxiv.org/abs/1311.2524 RCNN利用深度学习进行目标检测. 摘要 可以将ImageNet上的进全图像分类而训练好的大型卷积神经网络用到PASCAL的目标检测中? 答案是肯定的,并且结果是简单的,可扩展的,相对于可变部件模型(DPM)将平均精度提高了40%以上(在VOC 2007年达到最终的mAP为48%).我们的网络框架结合强大的产生自下而上的候选区域的计算机视觉技术和在学习高容量卷积神经网络中的最新进展.我们称之为R-CNN:具有CNN特征的…
论文地址:https://arxiv.org/pdf/1311.2524.pdf 翻译请移步: https://www.cnblogs.com/xiaotongtt/p/6691103.html https://blog.csdn.net/v1_vivian/article/details/78599229 背景: 1.近10年以来,以人工经验特征为主导的物体检测任务mAP[物体类别和位置的平均精度]提升缓慢: 2.随着ReLu激励函数.dropout正则化手段和大规模图像样本集ILSVRC的出…
https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote http://blog.csdn.net/bea_tree/article/details/51659263 http://blog.csdn.net/liyaohhh/article/details/50824226 http://blog.csdn.net/WoPawn/article/details/52133338    最好的 http://blog.csdn.net/u…
R-CNN总结 不总结就没有积累 R-CNN的全称是 Regions with CNN features.它的主要基础是经典的AlexNet,使用AlexNet来提取每个region特征,而不再是传统的SIFT.SURF的特征.同时,还利用了AlexNet本来的功能:分类,这时所得的分类结果相当于预分类.最后,由于每个Region是有边界的,使用SVM对其进行分类得到一个score,定位每个物体的bounding box. 预处理: 先看一看AlexNet的网络结构 可以看到,它的输入图像是一个…
作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik 该论文提出了一种简单且可扩展的检测算法,在VOC2012数据集上取得的mAP比当时性能最好的算法高30%.算法主要结合了两个key insights: (1)可以将高容量的卷积神经网络应用到自底向上的Region proposals(候选区域)上,以定位和分割目标 (2)当带标签的训练数据稀少时,可以先使用辅助数据集进行有监督的预训练,然后再使用训练集对网络的特定范围进行微调,…
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation 概括 这是一篇2016年的目标检测的文章,也是一篇比较经典的目标检测的文章.作者介绍到,现在表现最好的方法非常的复杂,而本文的方法,简单又容易理解,并且不需要大量的训练集. 文章的大致脉络如图. 产生region proposal 文章提到了滑窗的方法,由于滑窗的方法缺点非常明显,就是每次只能检测一个aspect ratio,所以确…
Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一个问题,就是nms算法根据类别置信度为准则去删掉与他iou大于一定阈值的算法是否合理?事实是,分类置信度没法评估回归框是否回归的准确,这就造成了一种情况,分类置信度高的不一定回归的准,那么回归的准的又因为与之iou更高而被剔除了.为什么回归的准的反而类别置信度可能不高,而类别置信度高的可能回归的不准…
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html Feature Pyramid Networks for Object Detection Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf Reference : T. Lin, P. Dollár,…
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可以和经典网络组合提升原网络效果. 一.问题背景 网络的深度(对应到感受野)与总stride通常是一对矛盾的东西,常用的网络结构对应的总stride一般会比较大(如32),而图像中的小物体甚至会小于stride的大小,造成的结果就是小物体的检测性能急剧下降. 传统解决这个问题的思路包括: (1)多尺度…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pdf 论文背景: 特征金字塔是用于检测不同尺寸物体的识别系统的基本组成部分.但是最近的深度学习目标检测方法避免了使用金字塔表示,部分原因在于它是计算和内存密集型的.Fast R-CNN和Faster R-CNN主张使用单一尺度计算特征,因为它提供了精确度与速度之间良好的折中,然而多尺度检测仍然表现更好…
Acquistion Location Confidence for accurate object detection 本论文主要是解决一下两个问题: 1.分类得分高的预测框与IOU不匹配,(我猜应该是训练数据集导致的) 2.基于回归的边框修正是非单调的,缺乏可解释性. 贡献点 IoU-guided NMS Optimization refine PRpooling 1.IoU-guided NMS (1)传统 NMS :  根据边界框的分类置信度排序,每次选择cls score最大的框,并对…
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale context aggregation)模块进行特征融合从而提出PFPNet(Parallel Feature Pyramid Network)算法来提升目标检测的效果. 1.使用spp模块通过扩大网络宽度而不是增加深度来生成金字塔形特征图 2.提出msca模块,有效地结合了大不相同规模的上下文信息 3…
第一印象 Rank & Sort Loss for Object Detection and Instance Segmentation 这篇文章算是我读的 detection 文章里面比较难理解的,原因可能在于:创新的点跟普通的也不太一样:文章里面比较多公式.但之前也有跟这方面的工作如 AP Loss.aLRPLoss 等.它们都是为了解决一个问题:单阶段目标检测器分类和回归在训练和预测不一致的问题.那么 Rank & Sort Loss 又在以上的工作进行了什么改进呢?又解决了什么问题…
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的基本组件.但由于金字塔表征的特征需要消耗较多的内存及计算资源,因此,深度学习尽量避免使用金字塔特征.本文利用深度卷积网络中自带的多尺寸信息构建特征金字塔.本文搭建了具有横向连接的自上而下的结构FPN,从而在所有尺寸上构建高层次的语义特征.本文在Faster R-CNN的基础结构上增加了FPN结构,并…
论文原址:https://arxiv.org/pdf/1809.08545.pdf github:https://github.com/yihui-he/KL-Loss 摘要 大规模的目标检测数据集在进行ground truth 框标记时仍存在这歧义,本文提出新的边界框的回归损失针对边界框的移动及位置方差进行学习,此方法在不增加计算量的基础上提高不同结构定位的准确性.而学习到的位置变化用于在进行NMS处理时合并两个相邻的边界框. 介绍 在大规模目标检测数据集中,一些场景下框的标记是存在歧义的,十…
摘要 目前检测的准确率受物体视频中变化的影响,如运动模糊,镜头失焦等.现有工作是想要在框的级别上寻找时序信息,但这样的方法通常不能端到端训练.我们提出了flow-guided feature aggregation,一个用于视频物体检测的端到端学习框架.在特征级别上利用时序信息,通过相邻帧的运动路径提高每帧的特征,从而提高检测的准确率. 简介 特征提取网络提取出每帧的feature maps.为了enhance被处理帧的特征,用一个光流网络(flownet)预测相邻帧和该帧之间的motions.…
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 2017上的一篇文章,采用特征金字塔的方法进行目标检测.文中利用深层卷积网络固有的多尺度金字塔层次结构,高效地构造特征金字塔.文章提出了FPN——一种具有横向连接的自顶向下的结构,来构建所有尺度上的高级语义特征映射. 网络结构 下图展示了几种不同的利用特征的方式:(a)为图像金字塔,就是对图像resize…
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object Detection进展缓慢,在DPM之后没有大的进展,直到CVPR2014,RBG大神(Ross Girshick)把当时爆火的CNN结合到Detection中,将PASCAL VOC上的准确率提高到53.7%,本文为你解读RBG的CVPR2014 paper: Rich feature hierar…
近些年,随着DL的不断兴起,计算机视觉中的对象检测领域也随着CNN的广泛使用而大放异彩,其中Girshick等人的<R-CNN>是第一篇基于CNN进行对象检测的文献.本文欲通过自己的理解来记录这几大模型的发展.(自己挖坑,自己待填) 0. overfeat 0.1. MultiBox 1. R-CNN R-CNN是第一篇将CNN用在目标检测领域中的,是开山之作,不过其中的原理结构也较为简单,如下图: 图1.1 R-CNN结构 步骤 通过selective search方法在一张图片上获取很多的…
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awesome-object-detection This is a list of awesome articles about object detection. R-CNN Fast R-CNN Faster R-CNN Light-Head R-CNN Cascade R-CNN SPP-Net Y…
Click here to download the source code to this post. In this tutorial, you’ll learn how to use the YOLO object detector to detect objects in both images and video streams using Deep Learning, OpenCV, and Python. By applying object detection, you’ll n…