JAVA实现N皇后问题(回溯法)】的更多相关文章

package com.leetCode; /** * Follow up for N-Queens problem. Now, instead outputting board configurations, return the total number of distinct solutions. * @author Zealot * @date 2015年7月23日 下午6:14:49 */ public class NQueensII { int[] x;//当前解 int N;//皇…
原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang 1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能互相攻击,即任意的两个皇后不能处在同意行,同一列,或同意斜线上. 2.matlab代码 function PlaceQueen(row,stack,N)%回溯法放置皇后 if row>N PrintQueen(N,stack);%打印棋盘 else for col=1:N stack(row)=co…
 DFS Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上. 你的任务是,对于给定的N,求出有多少种合法的放置方法.   Input 共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量:如果N=0,表示结束.   Output…
实际上回溯法有暴力破解的意思在里面,解决一个问题,一路走到底,路无法通,返回寻找另   一条路. 回溯法可以解决很多的问题,如:N皇后问题和迷宫问题. 一.概念 回溯算法实际类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现不满足条件的时候,就回溯返回,尝试别的路径. 百度解释:回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯…
1.引子 中国有一句古话,叫做“不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每走一步都更靠近目标结果一些,直到遇到障碍物,我们才考虑往回走.然后再继续尝试向前.通过这样的波浪式前进方法,最终达到目的地.当然整个过程需要很多往返,这样的前进方式,效率比较低下. 2.适用范围 适用于那些不存在简明的数学模型以阐明问题的本质,或者存在数学模型,但是难于实现的问题. 3.应用场景 在8*8国际…
描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,‘A’表示皇后,‘.’表示空格.不同的结果中,先输出第一个皇后位置靠前的结果:第一个皇后位置相同,先输出第二个皇后位置靠前的结果:依次类推. 输入样例: 输出样例: 输出的前几行:No 1:A...........A..........A.....A....A...........A..A.........A....No 2:A............…
一:问题描述 N皇后问题(含八皇后问题的拓展,规则同四皇后):在N*N的棋盘上,放置N个皇后,要求每一横行每一列,每一对角线上均只能放置一个皇后,求解可能的方案及方案数. 二:代码及结果如下 #include<stdio.h> #define N 4 //假设第i个皇后所在位置为(i,xi) //x[N]数组中存放所得解 void place(int t,int x[]) //递归判断第t层是否有解 { int xi; if(t>N) { ;xi<=N;xi++) { printf…
/* * 八皇后问题回溯法编程练习 * 在8×8的棋盘上,放置8个皇后,两个皇后之间不能两两攻击 * 也即,直线,垂直45度.135度方向不能出现两个皇后 * * copyright Michael 2014-12-19 * QQ 1192065414 **/ #include <iostream> #include <stack> #include <stdlib.h> #include <string.h> using namespace std; st…
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋格不能有其他皇后 解出能将八个皇后都放在棋盘中的摆法 这个问题通常使用两种方法来求解: 穷举法 回溯法(递归) 本文章通过回溯法来求解,回溯法对比穷举法高效许多,让我们学习如何实现吧! 实现思想: 我们先在棋盘的第0行第1个棋格放下第一个皇后 下一行寻找一个不冲突的棋格放下下一个皇后 循环第2步 如…
今早上看了一篇英语阅读之后,莫名有些空虚寂寞冷.拿出算法书,研读回溯法.我觉得n皇后问题完全可以用暴力方式,即先对n个数进行全排列,得到所有结果的下标组合,问题规模为n!. 全排列花了比较久的时间才编写出来.主要是没有找对思路.最终我想到了递归,即对4个数进行全排列可以化为把[对3个数进行了全排列]的结果拿出来,在下标为1-4的位置上各插上一个数,一次类推.于是我编写了全排列类: //全排列 class Arrangment{ int[][]ans; Arrangment(){} Arrangm…
回溯法一种选优搜索法,又称试探法.利用试探性的方法,在包含问题所有解的解空间树中,将可能的结果搜索一遍,从而获得满足条件的解.搜索过程采用深度遍历策略,并随时判定结点是否满足条件要求,满足要求就继续向下搜索,若不满足要求则回溯到上一层,这种解决问题的方法称为回溯法. 回溯法解求解问题步骤 针对给定问题,定义问题的解空间树: 确定易于搜索的解空间结构: 以深度优先方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索: 用回溯法求解问题,重点是设计问题的解空间树,其解题过程则是深度遍历解空间树的过…
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度斜线上都不能出现皇后的棋子,例子 要求编程求出符合要求的情况的个数.四皇后问题有很多种解法,这里主要介绍一种经典的解决方法:回溯法 回溯法的基本思想是:可以构建出一棵解空间树,通过探索这棵解空间树,可以得到四皇后问题的一种或几种解.这样的解空间树有四棵 在如上图所示的4×4的棋盘上,按列来摆放棋子,…
/*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ==========================================*/ #include <stdio.h> #include <stdlib.h> #define TRUE 1 #define FALSE 0 #define NUM_QUEEN 4 /* 皇后个数 */ typedef int BOOL; void n_q…
八皇后问题:将八个皇后摆在一张8*8的国际象棋棋盘上,使每个皇后都无法吃掉别的皇后,一共有多少种摆法? 两个皇后不能同时在同一行,同一列,和斜对角线的位置上,使用回溯法解决. 从第一行选个位置开始放棋子,第二行从0开始选择满足规则的位置,到第三行发现没有位置可以满足规则,那么就把第二行的棋子向后移动一个可以满足规则的位置,如果没有这个位置,就返回到第一行,将棋子向后移动一个,从头开始,以此类推. 这个同学的博客讲的很通俗易懂 https://www.cnblogs.com/bigmoyan/p/…
回溯法是一种搜索算法,从某一起点出发按一定规则探索,当试探不符合条件时则返回上一步重新探索,直到搜索出所求的路径. 回溯法所求的解可以看做解向量(n皇后坐标组成的向量,迷宫路径点组成的向量等),所有解向量的几何称为解空间.理论上说,回溯法可以遍历有限个解组成的解空间. 首先介绍回溯法中所需的几个要素: 起点 解向量中第一个元素,第一个可能取得的值. 如迷宫的起点或者假设第一个皇后在(1,1)的位置. 遍历解向量中下一个元素所有可能取值的方法 如迷宫中四个方向沿顺时针试探,n皇后中行优先遍历二维数…
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ------------------------- 1 | | O | | | | | ------------------------- 2 | | | | O | | | ------------------------- 3 | | | | | | O | ------------------…
回溯法是个很无聊的死算方法,没什么技巧,写这篇博客主要原因是以前思路不太清晰,现在突然想用回溯法解决一个问题时,无法快速把思路转换成代码. ------------------------------------------------------------------------------------------------------------------------------------- N-皇后问题描述:在N*N的棋盘上,每一行放置一个皇后,使得任意皇后之间不能互相攻击.求放置…
1.问题描述:      有一批共有 n 个集装箱要装上两艘载重量分别为 c1 和 c2 的轮船,其中集装箱 i 的重量为 w[i], 且重量之和小于(c1 + c2).装载问题要求确定是否存在一个合理的装载方案可将这 n 个集装箱装上这两艘轮船.如果有,找出一种装载方案.     例如,当n=3,c1=c2=50,且w=[10,40,40]时,可将集装箱1和集装箱2装上一艘轮船,而将集装箱3装在第二艘轮船:如果w=[20,40,40],则无法将这3个集装箱都装上轮船. 容易证明,如果一个给定的…
赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支构成这两个结点之间的路径. ② 路径长度:结点路径上的分支数目称为路径长度. ③ 树的路径长度:从树根到每一个结点的路径长度之和. 以下图为例: A到F :结点路径 AEF : 路径长度(即边的数目) 2 : 树的路径长度:3*1+5*2+2*3=19: ④ 结点的带权路径长度:从该结点的到树的根结…
(转自:http://blog.csdn.net/lican19911221/article/details/26264471) 图的m着色问题的Java实现(回溯法) 具体问题描述以及C/C++实现参见网址 http://blog.csdn.NET/lican19911221/article/details/26228345 /** * 着色问题 * @author Lican * */ public class Coloring { int n;//图的顶点数 int m;//可用颜色数 i…
Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int ans = 0; public int totalNQueens(int n) { char mp[][] = new char[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { mp[i][j] = '.'; }…
Leetcode之回溯法专题-51. N皇后(N-Queens) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位. 示例: 输入: 4 输出: [ [".Q..", // 解法 1 "...Q", "Q...&…
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基本概念: 回溯法思路的简单描述是:把问题的解空间转化成了图或者树的结构表示,然后使用深度优先搜索策略进行遍历,遍历的过程中记录和寻找所有可行解或者最优解. 1.2 使用条件: 当问题是要求满足某种性质(约束条件)的所有解或最优解时,便可以使用回溯法,其实有暴力剪枝的意味 1.3 使用思想: 回溯法常…
实验题目   回溯法实现8皇后问题 实验要求   a.掌握递归回溯算法的基本思想. b.学习掌握应用面向对象通用回溯程序框架解决实际问题.  提高面向对象编程的技能. 作业描述:在8*8格的棋盘上放置彼此不受攻击的8个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.8后问题等价于在n*n格的棋盘上放置8个皇后,任何2个皇后不放在同一行或同一列或同一斜线上. package pku.java; import java.util.ArrayList; import j…
学习链接: 回溯法解旅行商问题(TSP).贪心算法:旅行商问题(TSP) 今天早上做了无数个梦,然后被紧紧地吸附在床上.挣扎一番后爬起来,已经是9点了.然后我开始研究旅行商问题. 在一个无向图中找到一个可以遍历所有节点的一个最短回路.理论上说可以用全排列列出所有解的下标,然后一个一个试,时间复杂度o(n!).但是可以用回溯法,用[约束函数](constraint)判断当前路径是否连通,用[界限函数](bound)判断当前路径是否比已经求得的最短路径小.这两个判断任意一个不符,则做“剪枝操作”(不…
n皇后问题是一个以国际象棋为背景的问题:在n×n的国际象棋棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后,即任意两个皇后都不能处于同一条横行.纵行或斜线上. 蛮力法思想: 解决n皇后问题的思想本质上就是蛮力法,生成所有可能的摆放情况,并判断该情况是否满足要求,我们以树结构来表示解决问题的方法.以4*4的棋盘为例,第0层的根节点为空白的棋盘,第1层为只在棋盘的第一行摆放的四种不同情况,第2层是在第1层的基础上,摆放第二行的棋子,最后的叶子结点便是所有可能的完整摆放情况,共256种,但…
八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩展为九皇后,十皇后问题. 问题:在一个8*8棋盘上,每一行放置一个皇后旗子,且它们不冲突.冲突定义:同一列不能有两个皇后,每一个对角线也不能有两个皇后.当然,三个皇后也是不行的,四个也是不行的,凭你的智商应该可以理解吧.    解决方案:回溯与递归 介绍: 1.回溯法 回溯法是一种选优搜索法,按选优条件向前搜…
Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 34846    Accepted Submission(s): 15441 Problem Description A ring is compose of n circles as shown in diagram. Put natural numb…
回溯法 百度百科:回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步又一次选择,这样的走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 在包括问题的全部解的解空间树中,依照深度优先搜索的策略,从根结点出发深度探索解空间树.当探索到某一结点时,要先推断该结点是否包括问题的解,假设包括,就从该结点出发继续探索下去,假设该结点不包括问题的解,则逐层向其祖先结点回溯.(事实上回溯法就…
传送门 Description You have 4 cards each containing a number from 1 to 9. You need to judge whether they could operated through *, /, +, -, (, )to get the value of 24. Example 1: Input: [4, 1, 8, 7] Output: True Explanation: (8-4) * (7-1) = 24 Example 2…