并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios…
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻找n-1条边,恰好将这n个节点相连,并且这n-1条边的权值之和最小. 对于MST问题,通常常见的解法有两种:Prim算法   或者  Kruskal算法+并查集 对于最小生成树,一定要注意其定义是在无向连通图的基础上,如果在有向图中,那么就需要另外的分析,单纯用无向图中的方法是不能得出正确解的,这一…
Network Description Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have…
#include<iostream> #include<cstring> #include<string> #include<cstdio> #include<algorithm> using namespace std; #define MAX 80000 int father[MAX], son[MAX]; int v,v2, l; struct Kruskal //存储边的信息 { int a; int b; int value; }; b…
时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超越道路,因此庞大的道路网太昂贵而无法维护.老年人理事会必须选择停止维护一些道路.左上方的地图显示了目前正在使用的所有道路,以及每月维护这些道路的费用.当然,即使路线不像以前那么短,也需要采取某种方式在所有村庄之间保持通行.长老院长想告诉长老委员会每月要花多少钱才能维持连接所有村庄的道路.在上面的地图…
[题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1<=wi<=10^9. [算法]最小生成树+倍增LCA+并查集 [题解]首先求出图的一个最小生成树M,则所有边分成树边和非树边. 一.对于非树边(u,v),假设u和v在最小生成树M上的路径的最大边权是Max.要保证这条边在最小生成树上,只要w(u,v)=Max-1. 下面证明w(u,v)=Max-1时…
「luogu3402」[模板]可持久化并查集 传送门 我们可以用一个可持久化数组来存每个节点的父亲. 单点信息更新和查询就用主席树多花 一个 \(\log\) 的代价来搞. 然后考虑如何合并两个点. 由于我们要做到可持久化,所以我们就考虑用启发式合并. 至于路径压缩,ta好像会因为某些原因而MLE和TLE 其实我也没试过 那么我们在合并的时候就只需要借助主席树完成单点查询和修改就好了. 注意一个地方值得注意,就是在修改时因为我们的线段树是可持久化的,所以会通向之前版本的节点,所以不要覆盖之前的信…
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法,如有需要可到原文查看. Kruskal算法 1.概览 Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪婪算法的应用.和Boruvka算法不同的地方是,Kruskal算法在图中存…
一.什么是并查集 在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题.有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作: Find:确定元素属于哪一个子集.它可以被用来确定两个元素是否属于同一子集. Union:将两个子集合并成一个集合. 二.主要操作 初始化:把每个点所在的集合初始化为其自身. for(int i=1;i<=n;i++) f[i]=i; 查找:查找元素所在的集合,即根节点. int find(int x)…
Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条边不能使已有的边产生回路. 手动求解会发现Kruskal算法异常简单,以下是一个样例 先对边的权值排个序:1(0,1) 2(2,6) 4(1,3) 6(1,2) 8(3,6) 10(5,6) 12(3,5) 15(4,5) 20(0,1) 首选边1(0,1).2(2,6).4(1,3).6(1,2)…
1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止. 2. 克鲁斯卡算法图解 第1步:将边<E,F>加入R中. 边<E,F>的权值最小,因此将它加入到最小生成树结果R中. 第2步:将边<C,D>加入R中. 上一步…
济南集训第五天的东西,这篇可能有点讲不明白提前抱歉(我把笔记忘到别的地方了 最小生成树 概念:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. ​在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 w(T) 最小,则此 T 为 G 的最小生成树. 最小生成树其实是最小权重生成树的简称. 最小生成树…
概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出. 通俗一点,就是把一个图,削成一个树,要让这颗树权值最小 思路(kruskal) kruskal算法的基本思路就是,把所有的边以权值为关键字排序,然后,依次将一个一个点放入最小生成树中 如果,这个点已经有了,那我们就直接跳过 是不是很简单 因为搜索是否已经放入可以用dfs或bfs来查找,这…
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么跳过,否则合并他们分别所在的树. #include<iostream>#include<algorithm>using namespace std; struct eg{ int s,t,c;};int v,e;int ans=0;eg E[1000];int p[1000];bool…
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的时候,经常把最小生成树问题和最锻炼吧问题弄混淆,最后事实证明这两个问题是存在着相似点的. 所以还是可以参照我上一篇的博客 https://www.cnblogs.com/laysfq/p/9808088.html(此处插个"广告") 最小生成树的实质问题还是求最短的路径(是吧?肯定是的!)…
什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树是{cf, fa, ab} 3条边 Kruskal算法 用到上一篇中介绍的不相交集合(并查集) 首先,定义V是端点的集合,E是边的集合,A为要求的最小生成树集合 初始A为空集合,每个端点都作为单独的不相交集合 将所有边根据其权重进行排序 对每条边(v1, v2),如果其两个端点数据不同的不相交集,则…
Kruskal算法 图的最小生成树的算法之一,运用并查集思想来求出最小生成树. 基本思路就是把所有边从小到大排序,依次遍历这些边.如果这条边所连接的两个点在一个连通块里,遍历下一条边,如果不在,就把这条边加入连通块,这样就可以保证生成树的边权最小. 我们使用并查集来判断两个点是否在同一个连通块里,如果在,他们的find会相同,否则不在. #include<cstdio> #include<algorithm> #define N 42000 using namespace std;…
实验名称 最小生成树算法-Kruskal算法 实验目的 1.掌握并查集的合并优化和查询优化: 2.掌握Kruskal算法. 3.能够针对实际问题,能够正确选择贪心策略. 4.能够针对选择的贪心策略,证明算法的正确性. 5.能够根据贪心策略,正确编码. 6.能够正确分析算法的时间复杂度和空间复杂度 实验内容 采用Kruskal算法生成最小生成树,并采用并查集的合并优化和查询优化. 实验环境 操作系统:win 10; 编程语言:Java,JDK1.8: 开发工具:IDEA: 实验过程 算法简介 Kr…
传送门 一道:LCA+最大生成树 个人认为把这两个的板子写好(并熟练掌握了之后)就没什么难的 (但我还是de了好久bug)qwq 最大生成树:其实就是最小生成树的变形 我用的是kruskal (个人觉得kruskal比较好像and好写) 所以 对于kruskal而言 只是把边从小到大排序改成从大到小序就可以了 需要多维护一个w[ i ][ j ]数组 用来存从i点向上走j^2次步这个过程中最大承重量 透 又是数组开小了 (明明我算的不用那么大的啊qwq) 向现实低头 #include<cstdi…
1078 最小生成树 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver       题目描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的 帮助. 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场.为了使花费最少,他想铺设最短的光纤去连接所有的农场. 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案. 每两个农场间的距…
一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0cd" alt="">的近期公共祖先.指的是二者的公共祖先中深度最高的节点. 给定随意两个树中的节点,求它们的近期公共祖先. 对于二分查找树.二叉树,能够用普通的dfs实现.但对于多叉树.查询次数频繁的情况下.离线Tarjan算法的长处就显现出来了.因为对树上全部节点仅仅进…
背景:本文是在小甲鱼数据结构教学视频中的代码的基础上,添加详细注释而完成的.该段代码并不完整,仅摘录了核心算法部分,结合自己的思考,谈谈理解. Prim算法理解: 如图(摘录自小甲鱼教学视频中的图片),是一个带有权值的连通网: 根据上图可以列写出该连通网的邻接表,为了方便直观的理解:(邻接表初始化需按照权值增序排列) edges数组 begin end weight edge0 4 7 7 edge1 2 8 8 edge2 0 1 10 edge3 0 5 11 edge4 1 8 12 ed…
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1条边即可. #include<stdio.h> #include<iostream> #include<algorithm> #include<string.h> using namespace std; ; int v,l;///v代表点的个数,l代表边的个数…
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) {6 将(v,w)加到T中:7 else{舍弃(v,w):}8 }://if9 }//for 为了有效地执行第5和第6步,G中的结点的组合方式应该是易于确定结点v和w是否已由早先选择的边所连通的那种.在已连通的情况下,则将边(v,w)舍弃:若不连通,则把(v,w) 加人到T.一种可能的组合方法是把T的…
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺序选取每条边,假如一条边的两个端点不在同一个集合中,就将这两个端点合并到同一个集合中:假如两个端点在同一个集合中,说明这两个端点已经连通了,就将当前这条边舍弃掉:当所有顶点都在同一个集合时,说明最小生成树已经形成.(写代码的时候会将所有边遍历一遍) 来看一个例子: 步骤: (1)先根据权值把边排序:…
传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形成的连通块状态是一样的 那么可以根据乘法原理按权值分步,将每一步得到的结果相乘. 每次分步的计算可以用搜索/矩阵树定理来实现. 代码: #include<bits/stdc++.h> #define mod 31011 #define N 15 #define M 1005 using names…
2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=2342 Description 输入分为两行,第一行为一个整数n,表示字符串的长度,第二行有n个连续的小写的英文字符,表示字符串的内容. Input 输入分为两行,第一行为一个整数,表示字符串的长度,第二行有个连续的小…
题目传送门 可持久化并查集 n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 5 6 1 1 2 3 1 2 2 0 3 1 2 2 1 3 1 2 输出样例#1: 1 0 1 说明 $1 \le n \le 10^5, 1 \le m \le 2 \times 10^5$ By zky 出题人大神犇 分析:…
有关概念: 最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树 思路: 首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数-1即可 邻接矩阵输入,用类邻接表存储方式存边 #include<cstdio> #include<algorithm> using namespace std; #define MAXN #define MAXM int father[MAXN],n,m,cnt,ans,a,b; s…
克鲁斯卡尔(kruskal) //kruskal算法生成最小生成树. //对边集数组Edge结构的定义 typedef struct { int begin; int end; int weight; }Edge; void Minispantree_kruskal(Mgraph G) { int i,n,m; Edge edges[MAXEDGE]; //最大边数 . int parent[MAXVEX]; //最大顶点数. //此处省虐将邻接矩阵G转化为边集数组edges并按权值由小到大排序…