选自<Reinforcement Learning: An Introduction>, version 2, 2016, Chapter2 https://webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf 引言中是这样引出Chapter2的: One of the challenges that arise in reinforcement learning, and not in other kinds of learning…
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现.平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关个呢?OK,利用人工智能的相关算法来进行自动化通关一直是一个热门的话题,最近最火的相关东东就是传说中的alphaGo啦.而在游戏的自动化测试当中,这种算法也是非常实用的,可以大量的减少测试人力成本. 首先,对于实现马里奥A…
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习). 那么如何求解最优策略呢?基本的解法有三种: 动态规划法(dynamic programming methods) 蒙特卡罗方法(Monte Carlo methods) 时间差分法(temporal difference). 动态规划法是其中最基本的算法,也是理解后续算法的基础,因此本…
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基础的方法. 一个简单的例子可以解释蒙特卡罗方法,假设我们需要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如积分)的复杂程度是成正比的.而采用蒙特卡罗方法是怎么计算的呢?首先你把图形放到一个已知面积的方框内,然后假想你有一些豆子,把豆子均匀地朝这个方框内撒,散好后数这个图形之中有多少…
探索与利用增强学习任务的最终奖赏是在多步动作之后才能观察到,于是我们先考虑最简单的情形:最大化单步奖赏,即仅考虑一步操作.不过,就算这样,强化学习仍与监督学习有显著不同,因为机器要通过尝试来发现各个动作产生的结果,而没有训练数据告诉机器应当做什么动作.简而言之:缺少标记: 想最大化单步奖赏要考虑两个方面:一是需要知道每个动作带来的奖赏,而是要执行奖赏最大的动作. 实际上,单步强化学习任务对应了一个理论模型,即“K-摇臂赌博机”.什么是摇臂赌博机,就是,如图所示,赌徒投入一个硬币后,选择一个摇杆,…
增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向. 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式…
"敢于尝试,才有突破" 2017年5月27日,当今世界排名第一的中国棋手柯洁与AlphaGo 2.0的三局对战落败.该事件标志着最新的人工智能技术在围棋竞技领域超越了人类智能,借此机会,介绍一下AlphaGo背后的秘密--增强学习技术. 增强学习(Reinforcement Learning),也称强化学习,是一种在过程中学习提高机器智能的框架.该框架通常可用马尔可夫决策过程(Markov Decision Process)概念来描述,即假设存在智能体(Agent)在约束环境下执行某动…
"价值不是由一次成功决定的,而是在长期的进取中体现" 上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响.虽然多臂赌博机模型中引入了价值的概念,但方法在建模过程中本质上是以策略为优化目标,因此又常被归为基于策略的增强学习方法. 此外,增强学习方法还有基于价值以及基于模型两类主要方法.本文介绍第二类,先从描述价值目标的Q函数开始,它也常称之为Q-Learning方法. 最简单的Q函数可用"状态-动作"二维表…
大牛讲堂 | 算法工程师入门第二期-穆黎森讲增强学习 2017-07-13 HorizonRobotics…
原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Zero再一次成为热点话题.作为其核心技术之一的Deep reinforcement learning(深度增强学习,或深度强化学习)也再一次引发关注.Alpha Zero最有意义的地方之一是它去除了从人类经验(棋谱)中学习的过程,而是完全通过“左右互博”式的学习击败了自己的“前辈”.这也很能体现强化学…
1.游戏简介 符号A为 AI Agent. 符号@为金币,AI Agent需要尽可能的接取. 符号* 为炸弹,AI Agent需要尽可能的躲避. 游戏下方一组数字含义如下: Bomb hit: 代表目前AI Agent所接取的炸弹数. Coin hit:   代表目前AI Agent所接取的金币数. Iteration:代表游戏已经进行的帧数,案例正常游玩视频,250ms一帧.高速状态下帧频未知. Game Play:每帧会随机产生一个炸弹和一个金币,或者只产生一个炸弹或金币.每帧AI agen…
本文为Thomas Simonini增强学习系列文章笔记或读后感,原文可以直接跳转到medium系列文章. 主要概念为: Q-Learning,探讨其概念以及用Numpy实现 我们可以将二维游戏想象成平面格子,每个格子代表一个状态,并且对应了不同的动作,例如下图: Q函数接收状态和动作两个参数并输出Q值,即在一个状态下各种动作各自未来的期望奖励.公式如下: 这里的未来期望奖励,就是当前状态下一直到结束状态(成功或失败)所获取的奖励. Q-learning算法伪代码: 其中,更新Q值为bellma…
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关. 马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关.还是举下 棋的例子,…
BFC(块级格式化上下文) BFC(Block formatting context) 直译为"块级格式化上下文". 元素的显示模式 我们前面讲过 元素的显示模式 display. 分为 块级元素 行内元素 行内块元素 ,其实,它还有很多其他显示模式. 那些元素会具有BFC的条件 不是所有的元素模式都能产生BFC,w3c 规范: display 属性为 block, list-item, table 的元素,会产生BFC. 大家有么有发现这个三个都是用来布局最为合理的元素,因为他们就是…
接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性: 需要环境模型,即状态转移概率\(P_{sa}\) 状态值函数的估计是自举的(bootstrapping),即当前状态值函数的更新依赖于已知的其他状态值函数. 相对的,蒙特卡罗方法的特点则有: 可以从经验中学习不需要环境模型 状态值函数的估计是相互独立的 只能用于episode tasks 而我们希望的算法是这样的: 不需要环境模型 它不局限于episode task,可以用于连续的任务 本文介绍的时…
原文地址:http://blog.csdn.net/jinzhuojun/article/details/77144590 和其它的机器学习方向一样,强化学习(Reinforcement Learning)也有一些经典的实验场景,像Mountain-Car,Cart-Pole等.话说很久以前,因为没有统一的开发测试平台,大家都会自己实现,有用C/C++的,有用Python,还有用Matlab的.所以大家论文中看到的场景虽然相似,但很多时候不完全一样.这样一方面重新造轮子,另一方面还有可能因为实验…
一.要求:Tcode:FF_5 导入数据运行时,产生财务凭证之前修改某些字段值.Exmp:FEBRE-VWEZWBKPF-XBLNRFEBEP-CHECTBSEG-ZUONR there is a business Add-in(BADI) with the definition name FEB_BADI thatis called immediately before the standart posting in program RFEBBU00.In the case, you can…
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关. 马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关.还是举下棋的例子,当…
(一) 这个算法是基于一个概率来对探索和利用进行折中:每次尝试时,以概率进行探索,即以均匀概率随机选取一个摇臂,以的概率进行利用,即以这个概率选择当前平均奖赏最高的摇臂(如有多个,则随机选取). 其中:小k表示第k个摇臂.因为大K表示摇臂总数:n表示尝试的次数,vn表示第n次尝试的奖赏. Qn的直观意思为:为前n-1次的平均奖赏.当其与n-1相乘所得是前n-1次总奖赏.再加上第n次的奖赏,处于n,则为n次的平均奖赏. 其中:argmax为选取最优的Q(i).count是从0开始的,故count(…
2 Dom4j修改xml文档 2.1 写出内容到xml文档 XMLWriter writer = new XMLWriter(OutputStream, OutputForamt) wirter.write(Document); 2.2 修改xml文档的API 增加: DocumentHelper.createDocument()  增加文档 addElement("名称")  增加标签 addAttribute("名称",“值”)  增加属性 修改: Attrib…
可以通过下面的连接查看这个项目工程: https://github.com/reinforceio/tensorforce 通过这遍文章来了这个项目的使用: https://reinforce.io/blog/introduction-to-tensorforce/ from tensorforce import Configuration from tensorforce.agents import DQNAgent from tensorforce.core.networks import…
转自:http://blog.csdn.net/songrotek/article/details/51382759 博客地址:http://blog.csdn.net/songrotek/article/category/5419801…
PPO DPPO介绍 PPO实现 代码DPPO…
DDPG DDPG介绍2 ddpg输出的不是行为的概率, 而是具体的行为, 用于连续动作 (continuous action) 的预测 公式推导 推导 代码实现的gym的pendulum游戏,这个游戏是连续动作的 代码实践 """ Deep Deterministic Policy Gradient (DDPG), Reinforcement Learning. DDPG is Actor Critic based algorithm. Pendulum example.…
A3C 它会创建多个并行的环境, 让多个拥有副结构的 agent 同时在这些并行环境上更新主结构中的参数. 并行中的 agent 们互不干扰, 而主结构的参数更新受到副结构提交更新的不连续性干扰, 所以更新的相关性被降低, 收敛性提高 代码实践 import threading import numpy as np import tensorflow as tf import pylab import time import gym from keras.layers import Dense,…
DQN的变形 double DQN prioritised replay dueling DQN…
Actor Critic value-based和policy-based的结合 实例代码 import sys import gym import pylab import numpy as np from keras.layers import Dense from keras.models import Sequential from keras.optimizers import Adam EPISODES = 1000 # A2C(Advantage Actor-Critic) age…
前面都是value based的方法,现在看一种直接预测动作的方法 Policy Based Policy Gradient 一个介绍 karpathy的博客 一个推导 下面的例子实现的REINFORCE算法 实例代码 import sys import gym import pylab import numpy as np from keras.layers import Dense from keras.models import Sequential from keras.optimize…
从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import numpy as np from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential EPISODES…
Q-learning 实例代码 import numpy as np import random from environment import Env from collections import defaultdict class QLearningAgent: def __init__(self, actions): # actions = [0, 1, 2, 3] self.actions = actions self.learning_rate = 0.01 self.discoun…