LRN和Batch Norm】的更多相关文章

LRN LRN全称为Local Response Normalization,局部相应归一化层. message LRNParameter { optional uint32 local_size = 1 [default = 5]; optional float alpha = 2 [default = 1.]; optional float beta = 3 [default = 0.75]; enum NormRegion { ACROSS_CHANNELS = 0; WITHIN_CHA…
BN作用: 加速收敛 控制过拟合,可以少用或不用Dropout和正则 降低网络对初始化权重不敏感 允许使用较大的学习率 一.如何加速收敛? 通过归一化输入值/隐藏单元值,以获得类似的范围值,可加速学习. 限制了在前层的参数更新会影响数值分布的程度,使层的输出更加稳定,神经网络的之后的层就会有更坚实的基础(减弱了后层的参数因前层参数发生变化而受到的影响) 减弱了前层参数的作用与后层参数的作用之间的联系,使得网络每层都可以自己学习,稍稍独立于其他层,有助于加速整个网络的学习. 二.为什么说BN也会起…
学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方.这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用Batch Norm.Dropout和早停对模型进行优化:在此过程中说明我在调试代码过程中遇到的一些问题和解决方法. 一.搭建基本的卷积神经网络 第一步:准备数据 在<Hands on Machine Learning with Scikit-Learn and TensorFlow>这本书上,用的…
在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方法,通过减小batch size,也算得到了一个还可以的结果. 那个网络只有两层,而且MINIST数据集的样本量并不算太大.如果神经网络的隐藏层非常多,每层神经元的数量巨大,样本数量也巨大时,可能出现三个问题: 一是梯度消失和梯度爆炸问题,导致反向传播算法难以进行下去: 二是在如此庞大的网络中进行训…
加速网络收敛——BN.LN.WN与selu 自Batch Norm出现之后,Layer Norm和Weight Norm作为Batch Norm的变体相继出现.最近又出来一个很”简单”的激活函数Selu,能够实现automatic rescale and shift.这些结构都是为了保证网络能够堆叠的更深的基本条件之一.除了这四种,还有highway network与resnet. Batch Norm BN对某一层激活值做batch维度的归一化,也就是对于每个batch,该层相应的output…
cost function,一般得到的是一个 scalar-value,标量值: 执行 SGD 时,是最终的 cost function 获得的 scalar-value,关于模型的参数得到的: 1. 分类和预测 评估: 准确率: 速度:健壮性: 可规模性: 可解释性: 2. Data Augmentation 平移.旋转/翻转.缩放.加噪声 3. 溢出 矩阵求逆,W=PQ−1 W = P/(Q+1e-5*eye(d)); 4. batch norm.relu.dropout 等的相对顺序 Or…
1. batch norm 输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W]. <1> 形象点说,均值的计算过程为: (1) 即对batch中相同索引的通道数取平均值,所以最终计算得到的均值为C个,方差的计算过程与此相同. <2> batch norm层的作用: a. 均值:(2) b. 方差:(3) c. 归一化:(4) 2. caffe中batch_norm_layer.cpp中的LayerSe…
Batch Norm的意义:Covariate shift的问题 在传统的机器学习中,我们通常会认为source domain和target domain的分布是一致的,也就是说,训练数据和测试数据是满足相同分布的.这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障. Convariate Shift是指训练集的样本数据和目标样本集分布不一致时,训练得到的模型无法很好的Generalization.它是分布不一致假设之下的一个分支问题,也就是指Sorce Domain和Targe…
一.结论 Batch Norm一般用于CV领域,而Layer Norm一般用于NLP领域 Batch Norm需要计算全局平均,而Layer Norm不需要计算全局平均 二.Batch Norm Batch Norm原理: BatchNorm把一个batch中同一通道的所有特征(如上图红色区域)视为一个分布(有几个通道就有几个分布),并将其标准化.这意味着: 不同图片的的同一通道的相对关系是保留的,即不同图片的同一通达的特征是可以比较的 同一图片的不同通道的特征则是失去了可比性 用于CV领域的解…
深度学习模型训练的过程本质是对weight(即参数W)进行更新,这需要每个参数有相应的初始值. 有人可能会说:"参数初始化有什么难点?直接将所有weight初始化为0或者初始化为随机数!" 对一些简单的机器学习模型,或当optimization function是convex function时,这些简单的方法确实有效. 然而对于深度学习而言,非线性函数被疯狂叠加,这便是一个非凸函数,如何选择参数初始值便成为一个值得探讨的问题. 研究的目的是:选择更适合的初始化方法,使得目标函数更容易…
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparameters)较多,包括: :学习因子 :动量梯度下降因子 :Adam算法参数 #layers:神经网络层数 #hidden units:各隐藏层神经元个数 learning rate decay:学习因子下降参数 mini-batch size:批量训练样本包含的样本个数 超参数之间也有重要性差异. 1.通常…
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni…
Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift>论文中提出此方法来减缓网络参数初始化的难处. Batch Norm优点 减轻过拟合 改善梯度传播(权重不会过高或过低) 容许较高的学习率,能够提高训练速度. 减轻对初始化权重的强依赖 作为一种正则化的方式,在某种程度上减少对d…
一. Batch Normalization 对于深度神经网络,训练起来有时很难拟合,可以使用更先进的优化算法,例如:SGD+momentum.RMSProp.Adam等算法.另一种策略则是高改变网络的结构,使其更加容易训练.Batch Normalization就是这个思想. 为什么要做Normalization? 神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批训练数据的分布各不相同(batch梯度下降),那么网络…
目录 1  Batch Normalization笔记 1.1  引包 1.2  构建模型: 1.3  构建训练函数 1.4  结论 Batch Normalization笔记 我们将会用MNIST数据集来演示这个batch normalization的使用, 以及他所带来的效果: 引包 import tensorflow as tf import os from tensorflow.examples.tutorials.mnist import input_data from tensorf…
什么是梯度爆炸/梯度消失? 深度神经网络训练的时候,采用的是反向传播方式,该方式使用链式求导,计算每层梯度的时候会涉及一些连乘操作,因此如果网络过深. 那么如果连乘的因子大部分小于1,最后乘积的结果可能趋于0,也就是梯度消失,后面的网络层的参数不发生变化. 那么如果连乘的因子大部分大于1,最后乘积可能趋于无穷,这就是梯度爆炸 如何防止梯度消失? sigmoid容易发生,更换激活函数为 ReLU即可. 权重初始化用高斯初始化 如何防止梯度爆炸? 1 设置梯度剪切阈值,如果超过了该阈值,直接将梯度置…
输入的标准化处理是对图片等输入信息进行标准化处理,使得所有输入的均值为0,方差为1 normalize = T.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) 而Batch Normalization的目的是使各隐藏层输入的均值和方差为任意值 Batch Norm经常使用在mini-batch上,这也是其名称的由来 Batch Normalization是对下面隐藏层进行激活函数操作前的输入Z[l]进行标准层处理 进行的操作有: 1)…
Tuning process 下图中的需要tune的parameter的先后顺序, 红色>黄色>紫色,其他基本不会tune. 先讲到怎么选hyperparameter, 需要随机选取(sampling at random) 随机选取的过程中,可以采用从粗到细的方法逐步确定参数 有些参数可以按照线性随机选取, 比如 n[l] 但是有些参数就不适合线性的sampling at radom, 比如 learning rate α,这时可以用 log Andrew 很幽默的讲到了两种选参数的实际场景…
1.调试处理 2.为超参数选择合适的范围 3.超参数在实践中调整:熊猫与鱼子酱 4.正则化网络的激活函数 5.将batch norm拟合进神经网络 6. 为什么Batch Norm会起作用? 7.测试集怎么用Batch Norm? 也就是说在测试集中,gamma和beta值都是训练集训练得到的值,而样本均值和方差是测试集本身计算出来的,公式如下: 8. softmax回归 9. 训练一个softmax分类器 参考文献: [1]为什么batch normalization在训练和测试时使用的均值和…
bn一般就在conv之后并且后面再接relu 1.如果输入feature map channel是6,bn的gamma beta个数是多少个? 6个. 2.bn的缺点: BN会受到batchsize大小的影响.如果batchsize太小,算出的均值和方差就会不准确,如果太大,显存又可能不够用. 3.训练和测试时一般不一样,一般都是训练的时候在训练集上通过滑动平均预先计算好平均-mean,和方差-variance参数,在测试的时候,不再计算这些值,而是直接调用这些预计算好的来用,但是,当训练数据和…
1 调试处理( tuning process ) 如下图所示,ng认为学习速率α是需要调试的最重要的超参数. 其次重要的是momentum算法的β参数(一般设为0.9),隐藏单元数和mini-batch的大小. 第三重要的是神经网络的层数和学习率衰减 adam算法的三个参数一般不调整,设定为0.9, 0.999, 10^-8. 注意这些直觉是ng的经验,ng自己说了,可能其它的深度学习研究者是不这么认为的. 那么如何选择参数呢?下面介绍两个策略,随机搜索和精细搜索. 早一代的机器学习算法中,如下…
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β.隐藏层单元数.mini-batch size(黄色圈出).再之后是Layer.learning rate decay(紫色圈出).最后是Adam算法中的β1.β2.ε. (2)用随机取值代替网格点取值.下图左边是网格点取值,如果二维参数中,一个参数调试的影响特别小,那么虽然取了25个点,其实只相当于取了5个不同的点:而右图中随机取值取了多少个点就代…
Tensorflow Batch normalization函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 stackoverflow上tensorflow实现BN的不同函数的解释 最近在运行程序时需要使用到Batch normalization方法,虽然网上有很多资料,但是说法各异而且没有完全准确的,很多使用了Tensorflow中TF.slim高层封装,自己不是很明白.现在我将自己搜集的资料进行整理,便于以后查阅. 关于Batch normalization Tens…
    主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does Batch Norm work? 四.Batch Norm at test time       一.Normalizing activations in a network  1.在浅层机器学习算法中,如logistics regression,我们通常使用normalization来加速梯度下…
主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会对输入数据进行归一化处理,使得各个特征的数值规模处于同一个量级,有助于加速梯度下降的收敛过程. 2.在深层神经网络中,容易出现梯度小时或者梯度爆炸的情况,导致训练速度慢.那么,除了对输入数据X进行归一化之外,我们是否还可以对隐藏层的输出值进行归一化,从而加速梯度下降的收敛速度呢?答案是可以的. 3.…
BN层在实际中应用广泛. 上一次总结了使得训练变得简单的方法,比如SGD+momentum RMSProp Adam,BN是另外的方法. cell 1 依旧是初始化设置 cell 2 读取cifar-10数据 cell 3 BN的前传 # Check the training-time forward pass by checking means and variances # of features both before and after batch normalization # Sim…
深度神经网络难训练一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更新.为了训练好模型,我们需要谨慎初始化网络权重,调整学习率等. 本篇博客总结几种归一化办法,并给出相应计算公式和代码. 归一化层,目前主要有这几个方法,Batch Normalization(2015年).Layer Normalization(2016年).Instance Normalizati…
目录 Introduction BN LN IN GN SN Conclusion Introduction 输入图像shape记为[N, C, H, W] Batch Norm是在batch上,对NHW做归一化,就是对每个单一通道输入进行归一化,这样做对小batchsize效果不好: Layer Norm在通道方向上,对CHW归一化,就是对每个深度上的输入进行归一化,主要对RNN作用明显: Instance Norm在图像像素上,对HW做归一化,对一个图像的长宽即对一个像素进行归一化,用在风格…
第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止,你已经了解到,神经网络的改变会涉及到许多不同超参数的设置.现在,对于超参数而言,你要如何找到一套好的设定呢?在本节中,我想和你分享一些指导原则,一些关于如何系统地组织超参调试过程的技巧,希望这些能够让你更有效的聚焦到合适的超参设定中. 关于训练深度神经网络最难的事情之一是你要处理的参数的数量,下面粗…
bn是拉平各个feature的差异,而l2 norm是拉平各个样本的差异,本来各个样本的模长千变万化,按照距离的概念,差别是很大的,但是l2 norm后,距离就变得有一个上界了,显然样本间差异变小了.而对于各个feature,本来各个feature的量级都可能不一样,方差也就不一样,bn让方差为1,均值为0(理论上),各个feature的差异就小了, l2 norm并没有改变feature之间的相对大小. l2 norm是强行把同个维度的特征归一化.batch norm是把不同维度的去均值归一化…