A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA).自回归过程(AR).自回归移动平均过程(ARMA)以及ARIMA过程.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数. 通常的建立ARIMA…
似乎突如其来,似乎合情合理,我们和巴菲特老先生一起亲见了一次,又一次,双一次,叒一次的美股熔断.身处历史的洪流,渺小的我们会不禁发问:那以后呢?还会有叕一次吗?于是就有了这篇记录:利用ARIMA模型来预测美股的走势. 1. Get Train Dataset and Test Dataset 本例子简单地以2020年第一季度的道指的收盘价为数据集(数据来源雅虎财经),将前面95%的数据用作本次预测的训练集,后面5%的数据用作本次预测的测试集. library(quantmod) stock <-…
这段时间对模型做了升级和优化,并将版本更新到TP3.2. 下载 下载后请将目录放置TP的Library目录下 1.数据节点优化,原来的节点为模型的名称或者表名,现在更新为定义关系的方法名 public function test2(){ return $this->hasOne('Test2','test1_id'); } public function test3(){ return $this->hasMany('Test3','test1_id'); } 如这里:原来返回数组的关系节点的…