洛咕 P4199 万径人踪灭】的更多相关文章

给了两条限制,但是第二条想想是没用的,直接manacher就可以减掉多余的部分了,所以要求满足第一条的方案 也不难,可以想到枚举每个中心点,计算两边有多少对距离中心相等的位置值也相等,假设有\(t\)个,那么以这个中心点为半径的就是\(2^t-1\),因为每个都可以选或不选,减去全都不选的情况 现在就要计算和每个中心点距离相等的位置对数了,显然两个位置\(a,b\)如果值相同,那么中心就是\((a+b)/2\)(如果是小数的话就是两个格子之间的) 所以就简单了,\(A(i)=[S[i]='a']…
传送门 题目所求为所有的不连续回文子序列个数,可以转化为回文子序列数-回文子串数 回文子串manacher跑一跑就行了,考虑怎么求回文子序列数 我们考虑,如果$S_i$是回文子序列的对称中心,那么只要$S_{i-j}$和$S_{i+j}$相等,我们就多了一种选择 设共有$x$组相等的,那么以$S_i$为对称中心的回文子序列个数就是$2^{x+1}-1$,表示这$x$组包括对称中心选或不选,除去全都不选的都能算入答案 然而对称中心不一定在字符上可能在两个字符中间,那么这种时候回文子序列数就是$2^…
洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\sum_{i=1}^n\sum_{j=1}^mf[\gcd(i,j)]\) \(Ans=\sum_{x=1}^nf[x]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=x]\) 莫比乌斯反演,\(Ans=\sum_{x=1}^nf[x]\sum_{x|y}\mu(\frac{y}{…
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a+b)\)和\(F(a,b)\)会相互影响 可以换一种角度想,\(F(a,b-a)\)和\(F(a,b)\)会相互影响\((b>a)\) 那么可以从\(F(x,y)\)一路推下去 \(F(x,y)=F(x,y-x)=F(x,y-2x)=\cdots=F(x,y\mod x)\) (注意这里的\(\t…
洛咕 P2336 [SCOI2012]喵星球上的点名 先求出SA和height,一个点名串对应的就是一段区间,还有很多个点,就转化成了 有很多个区间,很多个点集,对每个区间计算和多少个点集有交,对每个点集计算和多少个区间有交. 第一个,HH的项链的树状数组做法 第二个,因为是点集所以要去重,假设点集有\(a_1,a_2,\cdots,a_k\),可以对每个区间只再覆盖的第一个点做记录 就是记录\(\sum_{i=1}^k\sum_{\texttt{interval }[l,r]}\left[l\…
洛咕 P4131 [WC2005]友好的生物 首先可以发现\(C\)是没有用的,可以乘进所有的权值里面做 考虑没有最后一维的限制,那么两个生物的友好值就是 \(\sum_{i=1}^k|a_i-b_i|\) 这个绝对值就很麻烦了. 但是可以换个思路想,既然是绝对值那么一定\(\geq 0\),所以两个生物的友好值是 \(\max\left(\sum_{i=1}^k(a_i-b_i)(-1)^{c_i}\right)\) 其中\(c\)取遍所有的01数组.正确性是显然的,因为其他的都没有答案大.…
洛咕 P4528 [CTSC2008]图腾 神题orz. 先约定abcd表示\(1\leq A<B<C<D\leq n\),而且\(y_a,y_b,y_c,y_d\)的排名正好是\(a,b,c,d\)的方案数 那么所求就是 1324-1243-1432 =(1x2x-1423)-(14xx-1423)-(12xx-1234) (其中有x的表示排名任意,但是不能重复) =1x2x-14xx-12xx+1234 =1x2x-1xxx+13xx+1234 预处理\(L,R\),\(L_i=\s…
这题太神仙了必须写博客... 显然可以想到二分答案.二分一个答案mid,如果所有长度\(\geq mid\)的路径都过x,那么答案一定\(<mid\),否则答案\(\geq mid\). 那么就可以写出代码了,树状数组套动态开点线段树即可.时间复杂度\(O(n(log_2n)^3)\) 然后因为出题人卡空间就炸了...如果256M就能过了.. #include<bits/stdc++.h> #define il inline #define vd void typedef long lo…
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658}}\) 因数可以\(O(\sqrt n)\)枚举. 分解质因数,\(999911658=2×3×4679×35617\),对这4个模数用lucas跑一遍答案,用crt合并. // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il i…
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\(\frac{n!}{m!}\)段,每一段和\(m!\)互质的数量都相同,那么显然就是\(\phi(m!)\) 所以答案是\(\frac{n!}{m!}\phi(m!)\) 然后怎么求呢,拆开 \(\frac{n!}{m!}\phi(m!)=\frac{n!}{m!}m!\Pi\frac{p-1}{…
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b+ba+ba^2+\cdots+ba^{i-3}+ba^{i-2}+X_1a^{i-1}\equiv t(\text{mod }p)\) \(b\frac{a^{i-1}-1}{a-1}+a^{i-1}x_1\equiv t(\text{mod }p)\) 拆分一波,提出\(a^{i-1}\) \(…
题解 每种字符跑一遍FFT,得到\(i + j = k\)时匹配的个数(要÷2,对于相同位置的最后再加上 然后算出\(2^{cnt[k]}\)的和,最后再减去用mancher匹配出的连续回文子串的个数即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define pdi pair<db,int> #define mp make_pair…
和https://www.cnblogs.com/xzz_233/p/10060753.html一样,都是多项式快速幂,还比那个题水. 设\(a[i]\)表示\([1,m]\)中$ \mod p\(余\)i\(的数的个数,\)f[i][j]\(表示用\)i\(个\)[1,m]\(中的数凑出\)j$的方案数 那么转移方程是\(f[i][j]=\sum_{k=0}^{p-1}f[i-1][(j-k)\mod m]\times a[k]\) 直接多项式快速幂即可 但是还有2条件,至少选一个质数,其实就…
听说是你谷史上最水月赛?我不听我最菜 T1:终于结束的起点 月天歌名好评 给你一个模数 \(M\),请你求出最小的 \(n > 0\),使得\(fib(n)\) \(mod\) \(m=0\),\(fib(n+1)\) \(mod\) \(m=1\). 数学题,开始还想打表验证下,但是我不会告诉你我打表的时候没有很及时地取膜,然后中间有结果溢出,耽误了很长时间,企图找了很久规律.结果发现暴力就能过.hhh. 这个故事告诉我们要及时取膜! #include<cstdio> #include…
四染色,贼好想 一个弃疗图形刚好对应一个红-绿-黄-粉色路线(不要吐槽颜色) 就是裸的最小割,建图傻逼懒得写了 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=getchar(); } while(isdigit(…
宝石只能在偶数秒取到,假设有一个宝石在奇数秒取到了,那么上一秒是偶数秒,在上一秒的时候这里的宝石就没了. 相邻的两个宝石不能同时取,很显然,先取一块,那么这是偶数秒,取完了这一块之后相邻的都没了. 只要不取相邻两个宝石,一定能构造出一种合法的方案(为什么?看胡伯涛的论文 所以答案就是二分图最小点权覆盖 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int…
大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) 莫比乌斯反演 \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\mu(i)(n/ix)(m/ix)}\) 把枚举\(i\)提出来,改成枚举\(ix\),里面还是枚举\(x\) \(ans=\Pi_{i=1}^n\Pi_{x|i}fib[x]^{\mu(i/x)(n…
假设f[i]是第i个同学胜利的概率,也就是随机序列第一个匹配到s[i]的概率 假设前面有一个字符串\(S\),(假设无限长但没有匹配),现在往后面要加上第i个串\(s[i]\),这个的概率设为\(P_i\).因为所有s[i]长度一样,所以每个\(P_i\)都相等. S s[i] 现在在\(S\)后面加\(s[i]\)的时候,可能先匹配到了别的串 S s[i] s[j] 假设\(S\)与\(s[j]\)的匹配长度为\(a\),\(s[i]\)与\(s[j]\)的匹配长度为\(b\),因为\(S\)…
显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种颜色选\(i\)种,所以乘一个\(C_m^i\) 然后这n个位置分成\(i+1\)个部分:被钦定的\(i\)种颜色,每个有\(S\)个:剩下的\(m-i\)种颜色,一共\(n-iS\)个.先看作是可重的全排列数,那么方案就有\(\frac{n!}{(S!)^i(n-iS)!}\)种.前\(i\)各部…
嘟嘟嘟 方案:回文子序列数 - 回文子串数. 回文子串数用manacher解决就行了,关键是怎么求会问序列数. 一个比较好的\(O(n ^ 2)\)的算法:对于一个回文中心\(i\),\(O(n)\)求出以\(i\)为中心位置对称且字母相同的字母对数\(x\),则以\(i\)为回文中心的回文子序列有\(2 ^ x - 1\)个(排除空序列). 现在想一下怎么优化. 上面寻找的过程,用一个式子写出来就是这样: \[c(i) = \sum _ {j = 0} ^ {i} s[i - j] == s[…
显然dp就是设\(f[i][j]\)表示dp了i轮,对m取膜是j的方案数 \(f[i][xy\mod m]=f[i-1][x]\times f[i-1][y]\) 这是\(O(nm^2)\)的 像我这样的蒟蒻都能想到用类似快速幂一样的东西来转移是吧,那么就\(O(log_2 nm^2)\)了 非常难受,还是过不去 如果可以优化一下dp转移就好了,比如把乘改成加,就能用NTT了 然后就要用到一个叫做原根的东西,学NTT的时候只是记了一下不知道这货有啥用 质数\(m\)原根\(g\)的性质:对\(m…
好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化成卷积的形式对吧,设\(f(i)=q_i,g(i)=\frac{1}{i^2}\) \(E_i=\sum_{j<i}f(j)g(i-j)+\sum_{j>i}f(j)g(j-i)\) 直接NTT就行了. #include<bits/stdc++.h> #define il inline…
暴力连边可以每个bi向i+kdi连边权是k的边. 考虑这样的优化: 然后发现显然是不行的,因为可能还没有走到一个dog的建筑物就走了这个dog的边. 然后就有一个很妙的方法--建一个新的图,和原图分开,这样就没有问题了. 左边这一个是原图,连向原图的点边是可以走的,但是原图的点可以走出去当且仅当这个点上有一个d=目标图d的dog 可以这样建\(\sqrt n\)个图,剩下的图在原图上暴力建,边数都\(<\sqrt n\) 所以最后点数边数都是\(n\sqrt n\)的 注意不用把图建出来,在跑的…
出题人没素质啊,强行拼题还把题面写得又臭又长. 简单题面就是有一张图,每条边有两个权值\(t,s\),有无限支军队,一支军队可以打一个点,代价是从n到这个点的路径的\(\frac{\sum t}{\sum s}\). 有m条限制,每条限制就是a,b两个点至少选一个,求最小代价. 首先第一部分也就是要求每个点的代价,显然分数规划,随便做做就没了. 第二部分就是裸的最小割,随便做做就没了. #include<bits/stdc++.h> #define il inline #define vd v…
套路题? 感觉讲不清,先写建图 把每个点拆成两个,A和B, S->Ai流量=1费用=0,Bi->T流量=1费用=0, Ai->Bj流量=1费用=ij最短路 还有一个特殊的s点,S->s流量k费用0 s->Bi流量1费用0i最短路 思想就是首先所有人从s出发,每个点第一个到的人就到了Bi,流进T,又从S流入Ai(是两个不同的流,但可以看做一样的) 这么做就会有一个问题,就是走得顺序问题,可能还没走到k-1就把k走掉了.所以i和j的最短路只能用<=j的点来更新.就像这样:…
甚至都不是树形背包= = 把每条线抠出来,这一条线就是个链的依赖关系,随便背包一下 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=getchar(); } wh…
把坐标按照(x+y)%2染色可以发现这是个二分图 二分图最大独立集=点数-最大匹配 于是就是个算匹配的傻逼题了 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=g…
有个结论就是把坐标\((x,y)\)变形成\(((x+y)/2,(x-y)/2)\),切比雪夫距离就变成了曼哈顿距离. 所以变换一下坐标直接统计答案即可. // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){…
同tjoi2010 打扫房间,每个点入度,出度都为1,可以向相邻4个点连边,但只有原来存在的边费用为0. // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=getc…
强行二合一啊... 前面直接二分最小值,二维前缀和.后面用主席树查最小值.注意要写\(nlogn\). // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-')f=-1; ch=getch…