# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential#按层 from keras.layers import Dense, Activation,Convolution2D,…
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import SimpleRNN,Activation,Dense from keras.optimizers import Ada…
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers import Dense,Activation,Flatten,Dropout,Convolution2D,MaxPooling2Dfrom keras.utils import np_utilsfrom keras.optimizers import RMSpropfrom skimage import…
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 def get_weight_variable(shape, regularizer): weights = tf.get_variable("weights", shape, initializer…
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential#按层 from keras.layers import Dense, Activation#全连接层 import ma…
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如下图所示: 将这个循环展开得到下图: 上一时刻的状态会传递到下一时刻.这种链式特性决定了RNN能够很好的处理序列化的数据,RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得了很到的结果. 根据输入.输出的不同和是否有延迟等一些情况,RNN在应用中有如下一些形态: RNN存在的问题 RNN能…
这篇博文不介绍基础的RNN理论知识,只是初步探索如何使用Tensorflow,之后会用笔推导RNN的公式和理论,现在时间紧迫所以先使用为主~~ import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import tensorflow.examples.tutorials.mnist.input_data as input_data from tensorflow.contrib import rnn…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练 batch_size = 100 #计算一共有多少个批次 n_batch = mnis…
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有…
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机…