将代码生成器带入TVM 为了使数据科学家不必担心开发新模型时的性能,硬件后端提供程序(例如Intel,NVIDIA,ARM等)可以提供诸如cuBLAS或cuDNN之类的内核库以及许多常用的深度学习内核,或者提供诸如此类的框架.例如带有图形引擎的DNNL或TensorRT,使用户以某种方式描述其模型以实现高性能.此外,新兴的深度学习加速器还具有自己的编译器,内核库或运行时runtime框架. 当用户尝试在新的内核库或设备上工作时,必须学习新的编程接口.结果,对统一编程接口的需求变得越来越重要,使所…