tf.reduce_sum()】的更多相关文章

tf.reduce_sum 函数 reduce_sum ( input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None ) 定义在:tensorflow/python/ops/math_ops.py. 请参阅指南:数学函数>减少 此函数计算一个张量的各个维度上元素的总和. 函数中的input_tensor是按照axis中已经给定的维度来减少的:除非 keep_dims 是true,…
tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明.官方给的api reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) input_tensor:表示输入 axis:表示在那个维度进行sum操作. keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度. reduction_indices:…
>>> x=[[1,2,3],[23,13,213]] >>> xx=tf.reduce_sum(x) >>> sess.run(xx) 255 >>> x=[90,10,8] >>> tf.reduce_sum(x) >>> sess.run(xx) 108…
根据官方文档: reduce_sum应该理解为压缩求和,用于降维 tf.reduce_sum(input_tensor,axis=None,keepdims=None,name=None,reduction_indices=None,keep_dims=None) Args: input_tensor: The tensor to reduce. Should have numeric type. #输入 axis: The dimensions to reduce. If None (the…
import tensorflow as tfimport numpy as npsess=tf.Session()a=np.ones((5,6))c=tf.cast(tf.reduce_sum(a, axis=1),tf.bool) # tf.reduce_sum 表示按照axis方向求和c=sess.run(c)print('c=',c)print('c.shape',c.shape)k=tf.where(c) # 因为返回的是索引值为列表中k=sess.run(k)print('k=',k…
1234567reduce_sum 是 tensor 内部求和的工具.其参数中: input_tensor 是要求和的 tensor axis 是要求和的 rank,如果为 none,则表示所有 rank 都要仇和 keep_dims 求和后是否要降维 这个操作的名称,可能在 graph 中 用 已被淘汰的,被参数 axis 替代 x = tf.constant([[1, 1, 1], [1, 1, 1]])tf.reduce_sum(x, 0) # 对 tensor 的 0 级进行求和,[1,…
#axis 表示在哪个维度进行sum操作,不写代表所有维 #keep_dims 是否保留原始数据维度 reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) 官方例子: # 'x' is [[1, 1, 1] # [1, 1, 1]] tf.reduce_sum(x) ==> 6 tf.reduce_sum(x, 0) ==> [2, 2, 2] tf.reduce_su…
易错点:注意带上参数axis,否则的话,默认对全部元素求和,返回一个数值int 参考:https://www.jianshu.com/p/30b40b504bae tf.reduce_sum( input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None, keep_dims=None)下面是个 2 * 3 * 4 的tensor [[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]],…
referrence: 莫烦视频 先介绍几个函数 1.tf.cast() 英文解释: 也就是说cast的直译,类似于映射,映射到一个你制定的类型. 2.tf.argmax 原型: 含义:返回最大值所在的坐标.(谁给翻译下最后一句???) ps:谁给解释下axis最后一句话? 例子: 3.tf.reduce_mean() 原型: 含义:一句话来说就是对制定的reduction_index进行均值计算. 注意,reduction_indices为0时,是算的不同的[]的同一个位置上的均值 为1是是算…
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j)} \] 本文意于分析tensorflow中的tf.nn.softmax(),关于softmax的具体推导和相关知识点,参照其它文章. tensorflow的tf.nn.softmax()函数实现位于这里,可以看到,实现起来相当简明: tf.exp(logits)/tf.reduce_sum(tf…
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np import tensorflow as tf import struct import glob import os from PIL import Image import time __sony__ = 0 __huawei__ = 1 __blackberry__ = 2 __stage_raw2ra…
这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率. 我们改写第十三节的程序,卷积函数我们使用tf.contrib.layers.conv2d(),池化函数使用tf.contrib.layers.max_pool2d()和tf.contrib.layers.avg_pool2d(),全连接函数使用tf.contrib.layers.fully_connected(). 一 tf.contrib.layers中的具体函数…
  激活函数 关于激活函数的介绍请参考:激活函数 这里只是记录TF提供的激活函数 import tensorflow as tf a = tf.nn.relu( tf.matmul(x, w1) + biases1 ) y = tf.nn.relu( tf.matmul(a, w2) + biases2 ) tf.cast cast( x, dtype, name=None ) #将x的数据格式转化成dtype.例如,原来x的数据格式是bool, #那么将其转化成float以后,就能够将其转化成…
转载链接:https://www.zhihu.com/question/51325408/answer/125426642来源:知乎 这个问题无外乎有三个难点: 什么是sum 什么是reduce 什么是维度(indices, 现在均改为了axis和numpy等包一致) sum很简单,就是求和,那么问题就是2和3,让我们慢慢来讲.其实彻底讲清楚了这个问题,很多关于reduce,维度的问题都会恍然大悟. 0. 到底操作哪个维度?? sum这个操作完全可以泛化为任意函数,我们就以sum为例,来看看各种…
# 23 Batch Normalization import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ACTIVATION = tf.nn.tanh N_LAYERS = 7 N_HIDDEN_UNITS = 30 def fix_seed(seed=1): # reproducible np.random.seed(seed) tf.set_random_seed(seed) def plot_h…
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function class TrainConfig: batch_size = 20 time_steps = 20 input_size = 10 output_size = 2 cell_size = 11 learning_rate = 0.01 class TestConfig(TrainConfig):…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS #…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 BATCH_START_TEST = 0 def get_batch(): global BATCH_START, TIME_STEPS x…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, fe…
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer # load data digits = load_di…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, activation_function=None,): # add one more…
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope(layer_name): with tf.…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) +…
训练一个简单的回归网络 基础的函数如下: # coding=utf-8 import tensorflow as tf import numpy as np np.random.seed(0) # 卷积权重初始化 def weight(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.1), name ='W') # 偏差值初始化 def bias(shape): return tf.Variable(tf.consta…
命名空间及变量共享 # coding=utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt; with tf.variable_scope('V1') as scope: a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) scope.reuse_variables() a3…
前几天一个同学在看一段代码,内容是使用gensim包提供的Word2Vec方法训练得到词向量,里面有几个变量code.count.index.point看不懂,就向我求助,我大概给他讲了下code是哈夫曼编码,count应该是这个词在训练语料中出现的计数,point应该是在建树的过程中 路径的节点等等,这个算法我13.14年的时候就看过,所以他的问题没把我难住.可是自己现在的工作内容和以前喜欢的NLP相关不大,为了给他讲解一下算法同时也练一下手,就打算用TensorFlow实现一个简化版的w2v…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 除去name参数用以指定该操作的name,与方法有关的一共两个参数: 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[b…
定义如下: reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) reduce_sum 是 tensor 内部求和的工具.其参数中: 1. input_tensor 是要求和的 tensor 2. axis 是要求和的 rank,如果为 none,则表示所有 rank 都要仇和 3. keep_dims 求和后是否要降维 4. 这个操作的名称,可能在 graph 中 用…