refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224d Problem set 1作业 softmax: def softmax(x): assert len(x.shape) > 1 x -= np.max(x, axis=1, keepdims=True) x = np.exp(x) / np.sum(np.exp(x), axis=1, kee…
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A neuron computes an activation function followed by a linear function (z = Wx + b)(神经 元节点先计算激活函数,再计算线性函数(z = Wx + b)) [ ] A neuron computes a linear f…
首先从单层神经网络开始介绍 最简单的单层神经网络可以看成是多个Perception的线性组合,这种简单的组合可以达到一些复杂的boundary. 比如,最简单的逻辑运算AND  OR NOT都可以由多个perception构成的单层神经网络模拟. 但是,单层感知器神经网络能力再强也是有限的,有些逻辑也无法完成.比如,XOR异或运算. 这个时候,就很自然地引出了多层神经网络. 通过这个例子,可以看到多层的神经网络的表达能力要比单层的要强. 上面给出了看待神经网络的一种方式: 1)从原始输入开始一直…
在学习NLP之前还是要打好基础,第二部分就是神经网络基础. 知识点总结: 1.神经网络概要: 2. 神经网络表示: 第0层为输入层(input layer).隐藏层(hidden layer).输出层(output layer)组成. 3. 神经网络的输出计算: 4.三种常见激活函数: sigmoid:一般只用在二分类的输出层,因为二分类输出结果对应着0,1恰好也是sigmoid的阈值之间. .它相比sigmoid函数均值在0附近,有数据中心化的优点,但是两者的缺点是z值很大很小时候,w几乎为0…
--------------------------------------------------中文翻译----------------------------------------------------------------------------------------- 1.神经元的计算是什么?(B) A. 在将输出应用到激活函数之前, 神经元计算所有特征的平均值 B. 神经元计算一个线性函数 (z = Wx + b), 然后是一个激活函数 C. 神经元计算一个激活函数, 后跟一…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
========================================================================================== 最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network (2016 ISET) [论文作者]Xiaoxuan Shen, Baolin Yi*, Zhaoli Zhang,Jiangbo Shu, and Hai Liu [论文链接]Paper(5-pages // Double column) <札记非FY> [摘要] 自动学习资源推荐已经成为一个越来…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…
0. Overview What is language models? A time series prediction problem. It assigns a probility to a sequence of words,and the total prob of all the sequence equal one. Many Natural Language Processing can be structured as (conditional) language modell…
Principles of training multi-layer neural network using backpropagation http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate…
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices…
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接.         原文地址: https://www.cnblogs.com/wuliytTaotao/p/9488045.html     -------------------------------------------…
MetaPruning 2019-ICCV-MetaPruning Meta Learning for Automatic Neural Network Channel Pruning Zechun Liu (HKUST).Xiangyu Zhang (MEGVII).Jian Sun(MEGVII) GitHub:251 stars Citation:20 Motivation A typical pruning approach contains three stages: training…
原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"DKNN",即可获得课件电子资源. 文章已经表明,对于将知识从整体模型或高度正则化的大型模型转换为较小的蒸馏模型,蒸馏非常有效.在MNIST上,即使用于训练蒸馏模型的迁移集缺少一个或多个类别的任何示例,蒸馏也能很好地工作.对于Android语音搜索所用模型的一种深层声学模型,我们已经表明,通过训练一组深层神经网络实现的几乎所有改进都可以提炼成相同大小的单个神经网络,部署起来容易得多. 对于非常大的神经网络,甚至训练一个完整的集成…
论文内容 G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network." 2015. 如何将一堆模型或一个超大模型的知识压缩到一个小模型中,从而更容易进行部署? 训练超大模型是因为它更容易提取出数据的结构信息(为什么?) 知识应该理解为从输入到输出的映射,而不是学习到的参数信息 模型的泛化性来源于错误答案的相对概率大小(一辆宝马被误判为卡车的概率大于被误判为萝卜的概率),而泛化性是学…
今天看到一篇1988年的老文章谈到了训练一个简单网络是NPC问题[1].也就是下面的网络结构,在线性激活函数下,如果要找到参数使得输入数据的标签估计准确,这个问题是一个NPC问题.这个文章的意义在于宣判了找简单的神经网络来降低计算难度是行不通的,同时找多项式内求解的算法也不用再考虑了. 站在时代的背景上,这篇文章反应了算力不足时期神经网络的尴尬位置,告诉我们算力设备是搞神经网络不可缺少的资源. [1] A. Blum and R. L. Rivest, "Training a 3-Node Ne…
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exercise of the deep learning specialization. In this notebook you will build your first image recognition algorithm. You will build a cat classifier that r…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
P2812 校园网络[[USACO]Network of Schools加强版] 题目背景 浙江省的几所OI强校的神犇发明了一种人工智能,可以AC任何题目,所以他们决定建立一个网络来共享这个软件.但是由于他们脑力劳动过多导致全身无力身体被♂掏♂空,他们来找你帮助他们. 题目描述 共有n所学校(n<=10000)已知他们实现设计好的网络共m条线路,为了保证高速,网络是单向的.现在请你告诉他们至少选几所学校作为共享软件的母机母鸡,能使每所学校都可以用上.再告诉他们至少要添加几条线路能使任意一所学校作…
第二周:神经网络的编程基础(Basics of Neural Network programming) 二分类(Binary Classification) 这周我们将学习神经网络的基础知识,其中需要注意的是,当实现一个神经网络的时候,我们需要知道一些非常重要的技术和技巧.例如有一个包含 \(m\) 个样本的训练集,你很可能习惯于用一个 for 循环来遍历训练集中的每个样本,但是当实现一个神经网络的时候,我们通常不直接使用 for 循环来遍历整个训练集,所以在这周的课程中你将学会如何处理训练集.…
训练技巧详解[含有部分代码]Bag of Tricks for Image Classification with Convolutional Neural Networks 置顶 2018-12-11 22:07:40 Snoopy_Dream 阅读数 1332更多 分类专栏: 计算机视觉 pytorch 深度学习tricks   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/e015…
第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类器,它以图片的特征向量(RGB值的矩阵,最后延展成一维矩阵x,如下)作为输入,然后预测输出结果…
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main steps of an ML algorithm, including making predictions, derivative computation, and gradient descent.3. Implement computationally efficient, highly vect…
文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着何凯明等人提出的ResNet v1,google这边坐不住了,他们基于inception v3的基础上,引入了残差结构,提出了inception-resnet-v1和inception-resnet-v2,并修改inception模块提出了inception v4结构.基于inception v4的…