原文链接:在Spark中尽量少使用GroupByKey函数 为什么建议尽量在Spark中少用GroupByKey,让我们看一下使用两种不同的方式去计算单词的个数,第一种方式使用reduceByKey :另外一种方式使用groupByKey,代码如下: 01 # User: 过往记忆 02 # Date: 2015-05-18 03 # Time: 下午22:26 04 # bolg: http://www.iteblog.com 05 # 本文地址:http://www.iteblog.com/…
第二条:类的头文件中尽量少引入其他头文件 使用向前声明(forward declaring) @class EOCEmployer 1, 将引入头文件的实际尽量延后,只在确有需要时才引入,这样就可以减少类的使用者所需引入的头文件数量,减少编译时间. 2,解决了两个类互相引用的问题 有时无法使用向前声明,比如要声明某个类遵循一项协议.这种情况下,尽量把“该类遵循某 协议”的这条声明移至“class-continuation分类“中.如果不行的话,就把协议单独放在一个头文件中,然后将其引入.…
groupBy 和SQL中groupby一样,只是后面必须结合聚合函数使用才可以. 例如: hour.filter($"version".isin(version: _*)).groupBy($"version").agg(countDistinct($"id"), count($"id")).show() groupByKey 对Key-Value形式的RDD的操作. 例如(取自link): val a = sc.paral…
避免使用GroupByKey 我们看一下两种计算word counts 的方法,一个使用reduceByKey,另一个使用 groupByKey: val words = Array("one", "two", "two", "three", "three", "three") val wordPairsRDD = sc.parallelize(words).map(word =>…
总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pyspark库为例. RDD 的操作函数(operation)主要分为2种类型 Transformation 和 Action,如下图: Transformation 操作不是马上提交 Spark 集群执行的,Spark 在遇到 Transformation 操作时只会记录需要这样的操作,并不会去执行,…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2 技术爱好者尤其是大数据爱好者 可以加DT大数据梦工厂的qq群 DT大数据梦工厂① :462923555 DT大数据梦工厂②:437123764 DT大数据梦工厂③…
函数重载重载的思想很简单:编译器允许你用同一名字定义多个函数或过程,只要它们所带的参数不同.实际上,编译器是通过检测参数来确定需要调用的例程.下面是从VCL 的数学单元(Math Unit)中摘录的一系列函数: function Min (A,B: Integer): Integer; overload; function Min (A,B: Int64): Int64; overload; function Min (A,B: Single): Single; overload; functi…
Spark中的IsNotNull函数怎么用 在这里看到的这个函数,就是判断是否为空,但是开始不知道怎么用,后来找到了,要在View中用,也就是SparkSQL中.如下: spark.sql("select * from abc where IsNotNull(colunm_name) limit x") PS:开始谷歌了半天没找到,结果百度了一番找到了答案-…
转自:https://blog.csdn.net/YSC1123/article/details/78905090 1.Character.isDigit() 判断是否为数字 2.Character.isLetter(): 判断是否为字母 3.ToList.takeWhile(x=>x != B): takeWhile的判断结果是Boolean,只要x值不等于B,则继续取:否则停止取元素的操作 4.map函数: 是对当前集合中每个元素进行映射的操作,这个函数可以理解成把当前数据整理成Java中的…
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不同的分区. 但这只是shuffle的过程,却不是shuffle的原因.为何需要shuffle呢? Shuffle和Stage 在分布式计算框架中,比如map-reduce,数据本地化是一个很重要的考虑,即计算需要被分发到数据所在的位置,从而减少数据的移动,提高运行效率. Map-Reduce的输入数…