小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断.也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小 数据预处理的目的:让数据适应模型,匹配模型的需求 3. 特征工程: 特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特…
Wrapper包装法 包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择.但不同的是,我们往往使用一个目标函数作为黑盒来帮助我们选取特征,而不是自己输入某个评估指标或统计量的阈值.包装法在初始特征集上训练评估器,并且通过coef_属性或通过feature_importances_属性获得每个特征的重要性.然后,从当前的一组特征中修剪最不重要的特征.在修剪的集合上递归地重复该过…
相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪音.在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息. 3 卡方过滤 卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤.卡方检验类feature_selection.chi2计算每个非负特征和标签之间的卡方统计量,并依照卡方统计量由高到低…
Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征. 这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树的集成模型中的feature_importances_属性,可以列出各个特征对树的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征. 因此相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,…
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold 这是通过特征本身的方差来筛选特征的类.比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用.所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征.VarianceThreshold有重要参数…
处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型).然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的.比如说,学历的取值可以是["小学",“初中”,“高中”,"大学"…
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况.因此,数据预处理中非常重要的一项就是处理缺失值. import pandas as pd data = pd.read_csv(r"C:\work\learnbetter\micro-class\ week 3 Preprocessing\Narrativedata.csv",ind…
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中, 无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响.(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好.) 数据的无量纲…
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间.技术能够让模型起飞,前提是你和业务人员一样理解数据.所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征.来看完整版泰坦尼克号数据中的这些特征 其中是否存活是我们的标签.很明显,以判断“是否存活”为目的,票号,登船的舱门,乘客编号明显是无关特征,可以直接删除.姓名,舱位…
处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值映射为0.默认阈值为0时,特征中所有的正值都映射到1.二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否.它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模). #将年龄二值化 data_2 = data.copy() from skle…
过滤法总结 到这里我们学习了常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数.通常来说,我会建议,先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的.所有信息被总结在下表,大家自取:…
1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler scaler = sklearn.preprocessin…
数据预处理(normalize.scale) 0. 使用 PCA 降维 matlab: [coeff, score] = pca(A); reducedDimension = coeff(:,1:5); reducedData = A * reducedDimension; 1. 最大最小映射(matlab) [trainx, s1] = mapminmax(trainx); testx = mapminmax('apply', test1, s1); 2. sklearn.preprocess…
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).…
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def test_SelectKBest(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] y=[0,1,0,1] print("before transform:",X) selector=SelectPercentile(s…
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_VarianceThreshold(): X=[[100,1,2,3], [100,4,5,6], [100,7,8,9], [101,11,12,13]] selector=VarianceThreshold(1) selector.fit(X) print("Variances is %s"…
from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_selection import RFE,RFECV from sklearn.model_selection import train_test_split #数据预处理包裹式特征选取RFE模型 def test_RFE(): iris=load_iris() X=iris.data y=iris.targe…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或者有一些特征带有的信息和其他一些特征是重复的(比如一些特征可能会线性相关).我们希望能够找出一种办法来帮助我们衡量特征上所带的信息量,让我们在降维的过程中,能够即减少特征的数量,又保留大部分有效信息——将那些带有重复信息的特征合并,并删除那些带无效信息的特征等等——逐渐创造出能够代表原特征矩阵大部分…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提到了,特征选择的目的是通过降维来降低算法的计算成本……这些语言都很正常地被我用来使用,直到有一天,一个小伙伴问了我,”维度“到底是什么? 对于数组和Series来说,维度就是功能shape返回的结果,shape中返回了几个数字,就是几维.索引以外的数据,不分行列的叫一维(此时shape返回唯一的维度…
sklearn提供的自带的数据集   sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_<name> 计算机生成的数据集(Generated Dataset):sklearn.datasets.make_<name> svmlight/libsvm格式的数据集:sklea…
简介 我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值.面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌. 在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中,在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳…
DecisionTreeClassifier与红酒数据集 1 sklearn.tree.DecisionTreeClassifier class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,…
重要属性和接口 至此,我们已经讲完了所有随机森林中的重要参数,为大家复习了一下决策树的参数,并通过n_estimators,random_state,boostrap和oob_score这四个参数帮助大家了解了袋装法的基本流程和重要概念.同时,我们还介绍了.estimators_ 和 .oob_score_ 这两个重要属性.除了这两个属性之外,作为树模型的集成算法,随机森林自然也有.feature_importances_这个属性. 随机森林的接口与决策树完全一致,因此依然有四个常用接口:app…
RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_de…
在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为XL>L>M.而T恤颜色是无序的.在讲解处理分类数据的技巧之前,我们先创建一个新的DataFrame对象: import pandas as pd from pandas import DataFrame data = {'color':['green','red','blue'],       …
数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差.实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化. 一.标准化(Standardization),或者去除均值和方差进行缩放 公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行. 将数据按其属性(按列进行)减去其均值,然后除以其方差.最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1. 首先说明下skl…
数据预处理包括数据的缺失值处理.标准化.规范化和离散化处理. 数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues. 对于数值属性,用平均值代替缺失值,对于nominal属性,用它的mode(出现最多的值)来代替缺失值. 标准化(standardize):类weka.filters.unsupervised.attribute.Standardize.标准化给定数据集中所有数值属性的值到一个0均值和单位方差的正态分布.…