首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
霍夫变换直线检测的matlab实现
2024-09-05
Matlab 霍夫变换 ( Hough Transform) 直线检测
PS:好久没更新,因为期末到了,拼命复习中.复习久了觉得枯燥,玩玩儿霍夫变换直线检测 霍夫变换的基本原理不难,即便是初中生也很容易理解(至少在直线检测上是这样子的). 霍夫变换直线检测的基本原理:(不配图了,自己在白纸上画画,理解更深刻) 一步一步来: 1.在白纸上画出一个直角坐标系,任意给出一个点: 2.那么,对于点(x0,y0),经过这个点的直线必定满足y0=k*x0+b, 其中k是直线的斜率,b是直线的截距: 3.上式可以化成b=y0-k*x0, 可以看作是以-x0为斜率,以y0为截距,
【CImg】霍夫变换——直线检测
霍夫变换——直线检测 考古debug,其实很久之前就解决的bug......一直忘记过来改文章....欸 =============================原文================================== 此处膜拜大神(学到很多):http://blog.csdn.net/jia20003/article/details/7724530 这个博客更了很多图像处理算法的底层实现解析,都很详细易懂,先mark ========================我是分割线
opencv学习笔记霍夫变换——直线检测
参考大佬博文:blog.csdn.net/jia20003/article/details/7724530 lps-683.iteye.com/blog/2254368 openCV里有两个函数(比较常用)处理霍夫变换直线检测,有什么区别呢. CvHoughLine:是用于标准的霍夫变换方法 CvHoughLine2:可以使用三种霍夫变换的方法,分别是标准霍夫变换(SHT).多尺度标准霍夫变换(MSHT).累计概率霍夫变换(PPHT). 函数原型: CvSeq* cvHoughLines2( C
Python+OpenCV图像处理(十四)—— 直线检测
简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变
【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得
opencv::霍夫变换-直线
霍夫直线变换介绍 Hough Line Transform用来做直线检测 前提条件 – 边缘检测已经完成 平面空间到极坐标空间转换 对于任意一条直线上的所有点来说,变换到极坐标中,从[0~360]空间,可以得到r的大小 属于同一条直线上点在极坐标空(r, theta)必然在一个点上有最强的信号出现,根据此反算到平面坐标中就可以得到直线上各点的像素坐标.从而得到直线. 标准的霍夫变换 cv::HoughLines从平面坐标转换到霍夫空间,最终输出是 表示极坐标空间 霍夫变换直线概率 cv::Hou
opencv python:直线检测 与 圆检测
霍夫直线变换介绍 霍夫圆检测 现实中: example import cv2 as cv import numpy as np # 关于霍夫变换的相关知识可以看看这个博客:https://blog.csdn.net/kbccs/article/details/79641887 def line_detection(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) edges = cv.Canny(gray, 50, 150, apertur
python实现直线检测
目录: (一)原理 (二)代码(标准霍夫线变换,统计概率霍夫线变换) (一)原理 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,
opencv直线检测在c#、Android和ios下的实现方法
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/5512142.html c#实现方法 LineSegment2D[][] lines = rgbRect.HoughLines(10, 150, 10, (Math.PI), 10, 0, 50); for (int i = 0; i < lines[0].Length; i++) { rgbIm
Win8 Metro(C#)数字图像处理--2.38Hough变换直线检测
原文:Win8 Metro(C#)数字图像处理--2.38Hough变换直线检测 [函数名称] Hough 变换直线检测 HoughLineDetect(WriteableBitmap src, int threshould) [算法说明] Hough变换是数字图像处理中一种常用的几何形状识别方法,它可以识别直线,圆,椭圆,弧线等 等几何形状,其基本原理是利用图像二维空间和Hough参数空间的点-线对偶性,把图像空间中的形 状检测问题转换到Hough的参数空间中去,最终
opencv:霍夫直线检测
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; void hough_linesp_demo(); int main(int argc, char** argv) { Mat src = imread("f:/images/qq/tline.png"); //Mat src = imread("f:/images/qq/
OpenCV——霍夫变换(直线检测、圆检测)
x #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src, src_gray, dst; src = imread("test1.jpg"); char INPUT_TITLE[] = "inpu
Android开发中的OpenCV霍夫直线检测(Imgproc.HoughLines()&Imgproc.HoughLinesP())
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 //2017-04-21更新: 很多网友希望能得到源码,由于在公司做的,所以不太方便传出来.而且我估计很多人可能都是对OpenCV在AndroidStudio环境下配置的问题,给大家推荐一本书<Mastering OpenCV Android Application Programming>,中文版叫<深入OpenCV Android应用开发>,某宝有卖正版,书中有详细代码
霍夫直线检测 opencv
本次实验是检测图像中的直线,用到了HoughLines()和HoughLinesP()函数,其中HoughLinesP()称为累计概率霍夫变换,实验结果显示累计概率霍夫变换要比标准霍夫变换的效果好.具体的参数介绍书中网上都有,可参照此博客https://www.cnblogs.com/skyfsm/p/6881686.html #include<opencv2/opencv.hpp> #include<opencv2/imgproc/imgproc.hpp> #include<
opencv —— HoughLines、HoughLinesP 霍夫线变换原理(标准霍夫线变换、多尺度霍夫线变换、累积概率霍夫线变换)及直线检测
霍夫线变换的原理 一条直线在图像二维空间可由两个变量表示,有以下两种情况: ① 在笛卡尔坐标系中:可由参数斜率和截距(k,b)表示. ② 在极坐标系中:可由参数极经和极角(r,θ)表示. 对于霍夫线变换,我们将采用第二种方式极坐标系来表示直线,因此直线的表达式可为: 化简便可得到: 对于(x0,y0),我们可以将通过这一点的所有直线统一定义为: 这就意味着每一对 代表一条通过点 的直线. 对于一个给定点 ,我们可以在直角坐标系中,绘出所有通过它的直线(θ 为 x 轴,r 为 y 轴).最
Hough Transform直线检测
本文原创,如转载请注明出处. Hough Transform 是一种能提取图像中某种特定形状特征的方法,可以将其描述成一种把图像空间中的像素转换成Hough空间中直线或曲线的一种映射函数.通过利用Hough空间的一些性质,我们可以找到并识别一些有共同特性的点(如在同一条直线上).这样我们就得到足够的信息去画出这些图形(如直线).其输入图像通常为二值边缘图像. 1.原理: 图像空间是所有像素所属于的图像的空间.Hough空间是一种变量混合空间,实际上它与图像相关但是却不存在物理实质性. 我们可以把
基于查表的整数霍夫变换方法实现(matlab)
暂时先用matlab把算法弄一下,这是基于查表的整数霍夫变换方法实现及解释. 接着再实现FPGA的霍夫变换. 霍夫变换原理和算法这里不多说,可参考以下链接: http://blog.csdn.net/poem_qianmo/article/details/26977557/ http://www.ilovematlab.cn/thread-25436-1-1.html 论文:基于FPGA的实时整数霍夫变换_唐林波 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
python opencv3 直线检测
git:https://github.com/linyi0604/Computer-Vision # coding:utf8 import cv2 import numpy as np # 读入图像 img = cv2.imread("../data/line1.png") # 转为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Canny边缘检测 edges = cv2.Canny(gray, 50, 100) "&q
OpenCV-Python 霍夫直线检测-HoughLinesP函数参数
cv2.HoughLines()函数是在二值图像中查找直线,cv2.HoughLinesP()函数可以查找直线段. cv2.HoughLinesP()函数原型: HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None) image: 必须是二值图像,推荐使用canny边缘检测的结果图像: rho: 线段以像素为单位的距离精度,double类型的,推荐用1.0 theta:
14、OpenCV Python 直线检测
__author__ = "WSX" import cv2 as cv import numpy as np #-----------------霍夫变换--------------------- #前提条件: 边缘检测完成 def line_detection(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) edges = cv.Canny(gray, 50, 150, apertureSize=3) lines = cv.H
热门专题
taro地图移动到当前位置
c# 数据类型转换int32、int64
springboot redis-session 自定义
git checkout <分支名> <文件名或文件夹名>
easyUI使用心得
Google UIAutomator 收集性能参数
FFMpeg获取v4l2设备视频流并打包PS流
requestbody实体类对象为空
Zephyr学习蓝牙
G代码编译生产中间代码
gojs节点线路API
modistool批处理mcd19a2
qttreewidget子节点
自动化测试iframe一会儿变7个,一会儿变5个
spring源码 win10
ubuntu1~16.04.1安装g
devexpress 自定以打印
aspx 后台创建的cookie 删不掉
Android popup 蒙层
eclispe搜索不到xml文件