首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
FFT在数据预处理中的作用
2024-10-22
FFT结果的物理意义
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高.傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱.从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的.从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域.换句话说,
数据预处理中归一化(Normalization)与损失函数中正则化(Regularization)解惑
背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范数(lasso),L2范数(ridge) 2.归一化 (Normalization) 2.1归一化的目的 2.1归一化计算方法 2.2.spark ml中的归一化 2.3 python中skelearn中的归一化 知识总结: 1.正则化(Regularization) 1.1 正则化的目的:我的
正则表达式小结,数据预处理中常用的shell命令
数据预处理中,这部分命令非常有用. 不需要编写代码,直接通过shell脚本通常就能修改文件格式.有时候sed和awk联合几乎能实现所有功能. 管道命令 | 重定向命令>,2>,>>,<,<< 双向重定向命令 tee 其他常见的命令包括:cut,grep,sort,wc,uniq,tee,tr,col,join,paste,expand,split,xargs等 grep查找命令, sed行处理命令, awk字段处理命令 cut 提取特定分割符分开的特定列 这几个的
Python初探——sklearn库中数据预处理函数fit_transform()和transform()的区别
敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: # 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing import StandardScaler # 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导 ss = Standard
sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl
机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况.因此,数据预处理中非常重要的一项就是处理缺失值. import pandas as pd data = pd.read_csv(r"C:\work\learnbetter\micro-class\ week 3 Preprocessing\Narrativedata.csv",ind
scikit-learn与数据预处理
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere
品牌logo在EDM数据营销中的运用
作为让客户识别并记住的“门面”, 品牌LOGO的设计与宣导一直都是品牌化输出的重中之重 . 而在邮件营销中,为了让用户在浏览邮件内容前先有品牌概念,营销人员在放置LOGO时常常仅把显眼突出纳入考虑因素,破坏了整体性不说,用户品牌好感度也会下降. 本次focussend以邮件营销为例,为大家解析品牌营销暗藏在邮件设计里的“小心机”,让品牌LOGO的效用在邮件营销中发挥到极致. ① 全局设计一体化,“低调”布局抓人眼球 实践表明,品牌LOGO可以放置在首尾,也可以置于中间.可以是水平布局,也可
pytorch数据预处理错误
出错: Traceback (most recent call last): File , in <module> train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler) File , in train_model for inputs, age_labels, gender_labels in dataloaders[phase]: File , in __next__ return self._process
小白学 Python 数据分析(9):Pandas (八)数据预处理(2)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学
【新人赛】阿里云恶意程序检测 -- 实践记录10.20 - 数据预处理 / 训练数据分析 / TF-IDF模型调参
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数据路径 train_path = './security_train.csv' test_path = './security_test.csv' # 将csv格式的训练数据处理为txt文本,只包含文件标签和api序列 def read_train_file(path): labels = [] #
借助 SIMD 数据布局模板和数据预处理提高 SIMD 在动画中的使用效率
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算
WCF技术剖析之十五:数据契约代理(DataContractSurrogate)在序列化中的作用
原文:WCF技术剖析之十五:数据契约代理(DataContractSurrogate)在序列化中的作用 [爱心链接:拯救一个25岁身患急性白血病的女孩[内有苏州电视台经济频道<天天山海经>为此录制的节目视频(苏州话)]]如果一个类型,不一定是数据契约,和给定的数据契约具有很大的差异,而我们要将该类型的对象序列化成基于数据契约对应的XML.反之,对于一段给定的基于数据契约的XML,要通过反序列化生成该类型的对象,我们该如何实现这样的场景? 比如下面定义了两个类型Contact和Customer,
TensorLayer官方中文文档1.7.4:API – 数据预处理
所属分类:TensorLayer API - 数据预处理¶ 我们提供大量的数据增强及处理方法,使用 Numpy, Scipy, Threading 和 Queue. 不过,我们建议你直接使用 TensorFlow 提供的 operator,如 tf.image.central_crop ,更多关于 TensorFlow 的信息请见 这里 和 tutorial_cifar10_tfrecord.py. 这个包的一部分代码来自Keras. threading_data([data, fn, thre
python中常用的九种数据预处理方法分享
Spyder Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把trai
文本数据预处理:sklearn 中 CountVectorizer、TfidfTransformer 和 TfidfVectorizer
文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词的权重.而权重与词在文本中出现的频率有关. 词袋模型首先会进行分词,在分词之后,通过统计每个词在文本中出现的次数,我们就可以得到该文本基于词的特征,如果将各个文本样本的这些词与对应的词频放在一起,就是我们常说的向量化.向量化完毕后一般也会使用 TF-IDF 进行特征
机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间.技术能够让模型起飞,前提是你和业务人员一样理解数据.所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征.来看完整版泰坦尼克号数据中的这些特征 其中是否存活是我们的标签.很明显,以判断“是否存活”为目的,票号,登船的舱门,乘客编号明显是无关特征,可以直接删除.姓名,舱位
机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中, 无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响.(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好.) 数据的无量纲
机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断.也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小 数据预处理的目的:让数据适应模型,匹配模型的需求 3. 特征工程: 特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特
WEKA中的数据预处理
数据预处理包括数据的缺失值处理.标准化.规范化和离散化处理. 数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues. 对于数值属性,用平均值代替缺失值,对于nominal属性,用它的mode(出现最多的值)来代替缺失值. 标准化(standardize):类weka.filters.unsupervised.attribute.Standardize.标准化给定数据集中所有数值属性的值到一个0均值和单位方差的正态分布.
matlab、sklearn 中的数据预处理
数据预处理(normalize.scale) 0. 使用 PCA 降维 matlab: [coeff, score] = pca(A); reducedDimension = coeff(:,1:5); reducedData = A * reducedDimension; 1. 最大最小映射(matlab) [trainx, s1] = mapminmax(trainx); testx = mapminmax('apply', test1, s1); 2. sklearn.preprocess
热门专题
拆分 plist 图
windows无法访问虚拟机地址
查找mysql 当前是不是正在执行
el-table添加id选择器
QComboBox 下拉按钮大小
svn被删除又重新提交文件 其他人提交失败
minGW64编译fdk-aac
vuecli修改端口
hbase hmaster的作用
如何封禁广东网络IP
jdbc工具类实现增删改查
el-checkbox-group 的使用
goodsync局域网同步
怎么利用爬虫工具谷歌使用
linux udp sendto 时间太长
java restful api实现文件上传
SR650 winserver2008安装教程
opengles 绘制线
canvas 动画引擎
mysql-5.7.31下载