首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
MSE MAE多大比较好
2024-10-22
机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)
一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 RMSE:均方根误差 MAE:平均绝对误差 二.具体实现 1)自己的代码 import numpy as np from sklearn.metrics import r2_score class SimpleLinearRegression: def __init__(self): ""
MSE, MAE, Huber loss详解
转载:https://mp.weixin.qq.com/s/Xbi5iOh3xoBIK5kVmqbKYA https://baijiahao.baidu.com/s?id=1611951775526158371&wfr=spider&for=pc 无论在机器学习还是深度领域中,损失函数都是一个非常重要的知识点.损失函数(Loss Function)是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度.我们的目标就是最小化损失函数,让 f(x) 与 y 尽量接近.通常可以使用梯度下降
【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后使用测试数据集进行测试然后和测试数据集自带的真实的标签进行对比,那么这样一来,我们就得到了我们的分类准确度,使用这种分类准确度来衡量机器学习模型的好坏 那么对于线性回归算法的好坏应该用什么来衡量呢 以简单线性回归算法来说,我们就是为了使损失函数尽可能的小,那么我们在使用的时候,实际上也是分成两部分的
SparkMLlib回归算法之决策树
SparkMLlib回归算法之决策树 (一),决策树概念 1,决策树算法(ID3,C4.5 ,CART)之间的比较: 1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准.信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息. 2 ID3算法只能对描述属性为离散型属性的数据集构造决策树,其余两种算法对离散和连续都可以处理 2,C4.5算法实例介绍(参考网址:http://m.blog.csdn.net/article/details
生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基
L1 loss, L2 loss以及Smooth L1 Loss的对比
总结对比下\(L_1\) 损失函数,\(L_2\) 损失函数以及\(\text{Smooth} L_1\) 损失函数的优缺点. 均方误差MSE (\(L_2\) Loss) 均方误差(Mean Square Error,MSE)是模型预测值\(f(x)\) 与真实样本值\(y\) 之间差值平方的平均值,其公式如下 \[ MSE = \frac{\sum_{i=1}^n(f_{x_i} - y_i)^2}{n} \] 其中,\(y_i\)和\(f(x_i)\)分别表示第\(i\)个样本的真实值及其
回归损失函数2 : HUber loss,Log Cosh Loss,以及 Quantile Loss
均方误差(Mean Square Error,MSE)和平均绝对误差(Mean Absolute Error,MAE) 是回归中最常用的两个损失函数,但是其各有优缺点.为了避免MAE和MSE各自的优缺点,在Faster R-CNN和SSD中使用\(\text{Smooth} L_1\)损失函数,当误差在\([-1,1]\) 之间时,\(\text{Smooth} L_1\)损失函数近似于MSE,能够快速的收敛:在其他的区间则近似于MAE,其导数为\(\pm1\),不会对离群值敏感. 本文再介绍几
L1、L2损失函数、Huber损失函数
L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 不稳定解 总是一个解 可能多个解 鲁棒性 最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值.如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择. L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整
Python Sklearn.metrics 简介及应用示例
Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库. 无论利用机器学习算法进行回归.分类或者聚类时,评价指标,即检验机器学习模型效果的定量指标,都是一个不可避免且十分重要的问题.因此,结合scikit-learn主页上的介绍,以及网上大神整理的一些资料,对常用的评价指标及其实现.应用进行简单介绍. 一. scikit-learn安装 网上教程很多,此处不再赘述,具体可以参照:
python线性回归
一.理论基础 1.回归公式 对于单元的线性回归,我们有:f(x) = kx + b 的方程(k代表权重,b代表截距). 对于多元线性回归,我们有: 或者为了简化,干脆将b视为k0·x0,,其中k0为1,于是我们就有: 2.损失函数 3.误差衡量 MSE,RMSE,MAE越接近于0越好,R方越接近于1越好. MSE平均平方误差(mean squared error) RMSE,是MSE的开根号 MAE平均绝对值误差(mean absolute error) R方 其中y_hat是预测值. 二.代码
Python 机器学习实战 —— 监督学习(下)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是广泛的民用设施,都充斥着AI应用的身影.接下来的一系列文章将会由浅入深从不同角度分别介绍机器学习.深度学习之间的关系与区别,通过一系统的常用案例讲述它们的应用场景.在上一篇文章< Python 机器学习实战 -- 监督学习(上)>中已经讲述了机械学习的相关概念与基础知识,监督学习的主要流程.对损失
利用Module模块把构建的神经网络跑起来
训练一个神经网络往往只需要简单的几步: 准备训练数据 初始化模型的参数 模型向往计算与向后计算 更新模型参数 设置相关的checkpoint 如果上述的每个步骤都需要我们写Python的代码去一步步实现,未免显的繁琐,好在MXNet提供了Module模块来解决这个问题,Module把训练和推理中一些常用到的步骤代码进行了封装.对于一定已经用Symbol定义好的神经网络,我们可以很容易的使用Module提供的一些高层次接口或一些中间层次的接口来让整个训练或推理容易操作起来. 下面我们将通过在UCI
LSTM UEBA异常检测——deeplog里其实提到了,就是多分类LSTM算法,结合LSTM预测误差来检测异常参数
结合CNN的可以参考:http://fcst.ceaj.org/CN/article/downloadArticleFile.do?attachType=PDF&id=1497 除了行为,其他还结合了时序的异常检测的:https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20Eugene%20Neyolov%20-%20Applying%20Machine%20Learning%20to%20User%20Behavi
基于sklearn的metrics库的常用有监督模型评估指标学习
一.分类评估指标 准确率(最直白的指标)缺点:受采样影响极大,比如100个样本中有99个为正例,所以即使模型很无脑地预测全部样本为正例,依然有99%的正确率适用范围:二分类(准确率):二分类.多分类(平均准确率) from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3] y_true = [0, 1, 2, 3] accuracy_score(y_true, y_pred) 0.5 accuracy_score(y_true
YOLO系列梳理(一)YOLOv1-YOLOv3
前言 本文是YOLO系列专栏的第一篇,该专栏将会介绍YOLO系列文章的算法原理.代码解析.模型部署等一系列内容.本文系公众号读者投稿,欢迎想写任何系列文章的读者给我们投稿,共同打造一个计算机视觉技术分享社区. 本文介绍了目标检测中one stage的YOLO算法,并介绍了从YOLOv1到YOLO
《JAVA语言程序设计》上课笔记
教学目标:1.使学生了解JAVA课程的性质.定位.作用:为什么要学习JAVA?让学生知道如何学好JAVA: 教学内容: 一. 问几个问题 1. 你们到这里来干什么的? 来学习JAVA程序设计 为什么要来学习JAVA呢? 找个好工作,拿到高薪水 2. 怎么样才能达到你们的目标呢? 有的同学说学好JAVA就可以了,但是如何才能学好呢? 学好JAVA的几个关键 1. 认认真真上课 2. 按时按
回归评价指标MSE、RMSE、MAE、R-Squared
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE.R-Squared. MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候:MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE: RMSLE: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再求RMSE,这个过程就是RMSLE.对低估值(under-p
可决系数R^2和MSE,MAE,SMSE
波士顿房价预测 首先这个问题非常好其实要完整的回答这个问题很有难度,我也没有找到一个完整叙述这个东西的资料,所以下面主要是结合我自己的理解和一些资料谈一下r^2,mean square error 和 mean absolute error.可能不是很完整,供参考 MSE 这个应用应该是最广的,因为他能够求导,所以经常作为loss function.计算的结果就是你的预测值和真实值的差距的平方和. MAE 这个用的不是上面的平方项了,而是用了绝对值项. R^2 看公式其实不难发现,它和MSE是有
衡量线性回归法的指标MSE, RMSE,MAE和R Square
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然,其衡量标准可以是 但问题是,这个衡量标准和m相关. (当10000个样本误差累积是100,而1000个样本误差累积却达到了80,虽然80<100,但我们却不能说第二个模型优于第一个) 改进==> 对式子除以m,使得其与测试样本m无关 -> 但又有一个问题,之前算这个公式时为了保证其每项为
MSE(均方误差)、RMSE (均方根误差)、MAE (平均绝对误差)
1.MSE(均方误差)(Mean Square Error) MSE是真实值与预测值的差值的平方然后求和平均. 范围[0,+∞),当预测值与真实值完全相同时为0,误差越大,该值越大. import numpy as np from sklearn import metrics y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0]) y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
MTALAB——神经网络mae()、mse()、sse()
mae():平均绝对误差 mse:均方误差 sse:误差平方和
热门专题
centos7 配置ssh
IEDA 目录 方式
二叉树表达式求值C语言
matlab生成数据并保存
solidity erc20代币转账
RPC调用原理和步骤
C# json数据怎么只取其中一个字段
「JLOI / SHOI2016」成绩比较
python获取函数内部所有变量
在任意地方使用Python3配置环境变量
kubernetes高可用集群搭建
表单数据载荷手机号解析出来有个冒号
odin刷机怎样关闭签名验证
怎么看proteus arduino uno 的布线
perl判断两个数组是否一样
终端 换盘符 mac
Project Migration怎么打开
Navicat for sqlite导入数据库
android SurfaceTexture使用
java大文件上传提升速度