首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
opencv 矩阵变换
2024-10-20
opencv估计两图的三维坐标变换矩阵
cv::estimateAffine3D(MatFrom, MatTo, Transfrom, inlier); Transform得到的是重MatFrom到MatTo的变换矩阵.inlier给一个空矩阵就可以. MatFrom和MatTo都是点的矩阵,每一行就是一个点. 这个函数使用的是点对来估计变换矩阵.是三维的,所以需要XYZ坐标.优化方法是RANSAC.
Opencv 3入门(毛星云)摘要
第一章 环境搭建: 1. 环境变量path 添加 D:\Program Files\opencv\build\x86\vc11\bin 2. VS在VC++项目中,属性管理器\属性. VC++目录 包含目录: D:\Program Files\opencv\build\include D:\Program Files\opencv\build\include\opencv D:\Program Files\opencv\build\include\opencv2 库目录: D:\Pro
OpenCV探索之路(二十一)如何生成能在无opencv环境下运行的exe
我们经常遇到这样的需求:我们在VS写好的程序,需要在一个没有装opencv甚至没有装vs的电脑下运行,跑出效果.比如,你在你的电脑用opencv+vs2015写出一个程序,然后老师叫你把程序发给他,他要看看功能实现的怎么样.老师的电脑肯定没有整套的开发环境的,如果你想只把代码发给他,让他自己编译,肯定会出现问题.所以,我们需要掌握如何生成一个不依赖开发环境的exe的方法. 下面将以一个实际例子说明如何生成一个不依赖开发环境的exe的方法. 比如我现在在VS2015下实现了一个图像拼接功能的程序
OpenCV探索之路(二十四)图像拼接和图像融合技术
图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要. 再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来.那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果! 比如我们有对这两张图进行拼接. 从上面两张图可以看出,这两张图有比较多的重
【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊. 为什么要讨论
(转载)利用SIFT和RANSAC算法(openCV框架)实现物体的检测与定位,并求出变换矩阵(findFundamentalMat和findHomography的比较) 置顶
原文链接:https://blog.csdn.net/qq_25352981/article/details/46914837#commentsedit 本文目标是通过使用SIFT和RANSAC算法,完成特征点的正确匹配,并求出变换矩阵,通过变换矩阵计算出要识别物体的边界(文章中有部分源码,整个工程我也上传了,请点击这里). SIFT算法是目前公认的效果最好的特征点检测算法,关于该算法的就不多说了,网上的资料有很多,在此提供两个链接,一个是SIFT原文的译文,一个是关于SIFT算法的详细解释:
OpenMP并行编程应用—加速OpenCV图像拼接算法
OpenMP是一种应用于多处理器程序设计的并行编程处理方案,它提供了对于并行编程的高层抽象.仅仅须要在程序中加入简单的指令,就能够编写高效的并行程序,而不用关心详细的并行实现细节.减少了并行编程的难度和复杂度.也正由于OpenMP的简单易用性,它并不适合于须要复杂的线程间同步和相互排斥的场合. OpenCV中使用Sift或者Surf特征进行图像拼接的算法.须要分别对两幅或多幅图像进行特征提取和特征描写叙述,之后再进行图像特征点的配对.图像变换等操作.不同图像的特征提取和描写叙述的工作是整个过程中
Android学习——在Android中使用OpenCV的第一个程序
刚開始学习Android,因为之前比較熟悉OpenCV,于是就想先在Android上执行OpenCV试试 =================================================================================== 1.环境配置 JDK Eclipse ADT CDT Android SDK Android NDK cygwin OpenCV for Android 2.4.9 这部分网上非常多.我就不再赘述了,能够參考:http://b
OpenCV编程入门目录
第一部分 快速上手OpenCV 第1 章 邂逅OpenCV 图像处理.计算机视觉与OpenCV OpenCV 概述 起源及发展 应用概述 .2OpenCV 基本架构分析 .3OpenCV3 带来了什么 项目架构的改变 将OpenCV2 代码升级到OpenCV3 报错时的一些策略 .4OpenCV 的下载.安装与配置 预准备:下载和安装集成开发环境 第一步:下载和安装OpenCV SDK 第二步:配置环境变量 第三步:工程包含(include)目录的配置 第四步:工程库(lib)目录的配置 第五步
图像处理之拼接---图像拼接opencv
基于SURF特征的图像与视频拼接技术的研究和实现(一) 一直有计划研究实时图像拼接,但是直到最近拜读西电2013年张亚娟的<基于SURF特征的图像与视频拼接技术的研究和实现>,条理清晰.内容完整.实现的技术具有市场价值.因此定下决心以这篇论文为基础脉络,结合实际情况,进行“基于SURF特征的图像与视频拼接技术的研究和实现”. 一.基于opencv的surf实现 3.0以后,surf被分到了"opencv_contrib-master"中去,
opencv:傅里叶变换
示例代码: #include <opencv.hpp> #include <iostream> using namespace std; using namespace cv; int main() { // 1. 以灰度模式读取原始图并显示 Mat srcImage = imread(); if (!srcImage.data){ printf("input image error ! \n"); return false; } imshow("原始
opencv之SURF图像匹配
1.概述 前面介绍模板匹配的时候已经提到模板匹配时一种基于灰度的匹配方法,而基于特征的匹配方法有FAST.SIFT.SURF等.上面两篇文章已经介绍过使用Surf算法进行特征点检測以及使用暴力匹配(BruteForceMatcher)和近期邻匹配(FLANN)两种匹配方法.接下来将更深一步介绍利用Surf检測到的特征点以及匹配对进行图像匹配. 利用Surf算法进行图像匹配其一般流程为:检測物体特征点->计算特征点描写叙述子->使用BurteForceMatcher或FLANN进行特征点匹配-&
Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正
图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Surf特征进行匹配,找到最匹配的特征点对 3. 提取最优配对点的坐标,生成透视变换矩阵 4. 对测试图像经过透视变换,生成配准图像 以下是Opencv代码实现: #include "highgui/highgui.hpp" #include "opencv2/nonfree/nonf
Opencv Sift和Surf特征实现图像无缝拼接生成全景图像
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像 4. 图像2拼接到映射图像上,完成拼接 过程1.2.3没啥好说的了,关键看看步骤4中的拼接部分.这里先采用比较简单一点的拼接方式来实现: 1. 找到图像1和图像2中最强的匹配点所在的位置 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标 3. 在
opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)
离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> using namespace cv; //-----------------------------------[ShowHelpText( )函数]----
OpenCV实现图像变换(python)
一般对图像的变化操作有放大.缩小.旋转等,统称为几何变换,对一个图像的图像变换主要有两大步骤,一是实现空间坐标的转换,就是使图像从初始位置到终止位置的移动.二是使用一个插值的算法完成输出图像的每个像素的灰度值.其中主要的图像变换有:仿射变换.投影变换.极坐标变换. 仿射变换 二维空间坐标的仿射变换公式: \[ \left( \begin{matrix} \overline{x} \\ \overline{y} \end{matrix} \right) =\left( \begin{matrix}
深入学习OpenCV文档扫描及OCR识别(文档扫描,图像矫正,透视变换,OCR识别)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 下面准备学习如何对文档扫描摆正及其OCR识别的案例,主要想法是对一张不规则的文档进行矫正,然后通过tesseract进行OCR文字识别,最后返回结果.下面进入正文: 现代生活中,手机像素比较高,所以大家拍这些照片都很随意,随便拍,比如下面的照片,如发票,文本等等: 对于这些图像矫正的问题,在图像处理领域
[opencv]常用阵列操作函数总结
/*=========================================================================*/ // 阵列操作 /*=========================================================================*/ 基本矩阵和图像运算符 ---------------------------------------------------------------------------
opencv在图像显示中文
在图像定位和模式识别时,经常需要把结果标注到图片上,标注内容可以是数字字母.矩形框等(opencv支持的)或者是中文汉字(借助freetype). 1.显示数字/矩形框 #include <opencv/highgui.h> using namespace cv; //绘画 Mat image = imread(image_root + filename); Point p1(x,y), p2(x+w,y+h), p0(x+w/, y+h/); ; //数字 rectangle(image,
opencv中Mat与IplImage,CVMat类型之间转换
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Matlab中的各种矩阵运算),所以将IplImage类型和CvMat类型转换为Mat类型更易于数据处理. Mat类型可用于直接存储图像信息,通过函数imread.imwrite.imshow等实现(与Matlab中的函数相
opencv源码:cascadedetect
级联分类器检测类CascadeClassifier,提供了两个重要的方法: CascadeClassifier cascade_classifier; cascade_classifier.load( cascade_dir + cascade_name );// 加载 vector<Rect> object_rect; cascade_classifier.detectMultiScale( img1, object_rect, |CASCADE_SCALE_IMAGE, Size(,) )
热门专题
deflate压缩算法
2008系统 会话时间限制
kettle 去除字符串的引号
Qt setData 存储结构体
spark的学习心得
.NET 开源翻译插件
怎么看内存是ddr3还是ddr4
js中创建script标签并设置路径
react link传参
Linux 免密访问pub多个
idea插件database怎么复制表
python pandas列相关系数
connect by rownum用法
I Love GPLT 有几个字符
aop拿到注解参数值
网页升级维护自动跳转页面
Windows Mobile 灭亡的七
jquery新闻滚动
sql server 扩展字段长度
aes128cbc网页版