首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
PCA的数学推导过程
2024-09-03
PCA主成分分析算法的数学原理推导
PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥:可视化等2.主成分分析法的数学原理主要是利用梯度上升法来最优化目标函数,即利用梯度上升法来求取效用函数的最大值,其具体的数学原理推导过程如下所示: 对于以上的函数,因为梯度的向量化表示我们已经求得,因此,我们便可以通过梯度上升法求取函数的
KL变换和PCA的数学推导
一些推导的笔记 上面分解成无穷维,大多数时候都不是的吧... 这里的d有限维,应该是指相对小于上面的分解的维度的某个数 参考资料 参考资料,上面是从最小化损失的角度,利用拉格朗日对偶的优化方法求解 pca的另一种最大化方差的解释 kl变换和pca区别
ubuntu之路——day5(今天看了浅层神经网络的数学推导过程)
1.初始化 2.前向传播 导数比较好理解 3.反向传播 全符号积分的推导看得我头有点晕 最后唤起我依稀的线代回忆 感谢吴恩达老师的反向传播讲解,第一遍看的有点晕,然后仔细看了一下又找了个B站的推导就懂了: 吴恩达老师原讲解:https://mooc.study.163.com/learn/2001281002?tid=2001392029#/learn/content?type=detail&id=2001702020&cid=2001693027 B站小姐姐的推导:https://www
LDA-线性判别分析(二)Two-classes 情形的数学推导
本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了看,觉得数学味挺浓,一时引起了很大的兴趣:再看看,就有整理一份资料的冲动了.网上查到的相关文章大都写得不是很详细,而且在概念和记号等方面也比较混乱,因此,在整理本文时,我有意识地牵了一根主线,想让读者读起来有循序渐进的感觉,记号上也力求规范和统一.期间参考了若干文献,以及一些优秀的博客,如 Jerr
PCA的数学原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读
PCA的数学原理(转)
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在
统计知识选讲(二)——主成分分析(PCA)的推导和应用
1.数学推导 根据上讲的思想,我们可以用下图来进行数学上的推导. 2.PCA的步骤 1)对原始数据进行标准化处理:对该指标变量进行标准化, 2)计算相关系数矩阵(协方差矩阵) 3)计算相关系数矩阵的特征值和特征向量,得到新的指标标量. 4)计算特征值的信息贡献率和累积贡献率,按一定规则选择主成分 5)以主成分的贡献率为权重,构建主成分综合评价模型,计算综合评价值和排名 3.应用实例——我国各地区普通高等教育发展综合评价 案例背景不再详述,在此我们选取10个指标来评价30个省市他们的普通高等教育发
【cs229-Lecture2】Gradient Descent 最小二乘回归问题解析表达式推导过程及实现源码(无需迭代)
视频地址:http://v.163.com/movie/2008/1/B/O/M6SGF6VB4_M6SGHJ9BO.html 机器学习课程的所有讲义及课后作业:http://pan.baidu.com/s/1i3xcljJ 视频前半部分讲了梯度下降算法的迭代过程求的局部最小值,后半部分介绍了利用数学方法给出参数向量的解析表达式,从而求出参数的值,也就是一种无需迭代的方法. 由于PC上编辑不太方便,以下推导过程我会尽可能详细地呈现在草稿纸上,其实视频中AndrewNg已经讲解的很详细了,其实我也
跟我学算法-PCA(降维)基本原理推导
Pca首先 1.对数据进行去均值 2.构造一个基本的协方差矩阵1/m(X)*X^T 3对协方差矩阵进行变化,得到对角化矩阵,即对角化上有数值,其他位置上的数为0(协方差为0),即求特征值和特征向量的过程 4.求得特征向量的单位化矩阵,单位化特征向量矩阵*原始数据(去均值后的)即降维操作,单位化特征向量的维度决定了降维的维度 以下是实际推导过程 实例求解过程
[hdu5307] He is Flying [FFT+数学推导]
题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left(s\left[i\right]\right)<=50000$ 也就是说,总长度是很小的,这提示我们往"通过长度来解题"的方向上想 那么,最便捷的处理区间长度和的算法是什么呢?前缀和 我们需要求什么? 做题的过程中,一定不能忘记这一点:我们要求的是,所有长度为s的区间的愉悦值总和 那么
神经网络的BP推导过程
神经网络的BP推导过程 下面我们从一个简单的例子入手考虑如何从数学上计算代价函数的梯度,考虑如下简单的神经网络,该神经网络有三层神经元,对应的两个权重矩阵,为了计算梯度我们只需要计算两个偏导数即可: 首先计算第二个权重矩阵的偏导数,即 首先需要在之间建立联系,很容易可以看到的值取决于,而,而又是由取sigmoid得到,最后,所以他们之间的联系可以如下表示: 按照求导的链式法则,我们可以先求对的导数,然后乘以对的导数,即 由于 不难计算 令 上式可以重写为 接下来仅需要计算即可,由于 忽略前面的
XGBoost 完整推导过程
参考: 陈天奇-"XGBoost: A Scalable Tree Boosting System" Paper地址: <https://arxiv.org/abs/1603.02754 文哲大佬全程手推 兄弟们, 再来手撸一波XGBoost, 这上半月目标算达成了. 感觉比上次撸 SVM 还是要难一些的. 但必须手撸, 因为, 近两年, 我已认识到, 很多梦魇, 只有从源头上彻底消灭后, 便不会时常萦绕心灵... 一边看原paper 和贪心地搬运大佬的知识,化为己有, 其乐无穷
借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5
上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.pdf https://inst.eecs.berkeley.edu/~ee227a/fa10/login/l_dual_strong.html https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sdual_slater.html http://w
BP神经网络推导过程详解
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad
1014 C语言文法定义与C程序的推导过程 程序:冒泡算法C程序(语法树)
阅读并理解提供给大家的C语言文法文件. 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 给出一段C程序,画出用上述文法产生这段C程序的完整语法树. 程序:冒泡算法C程序 点此文字查看原图(完整图片) #include <stdio.h> main() { int i,j,temp; ]; ;i<;i++) scanf ("%d,",&a[i]); ;j<=;j++) { ;i<-j;i++) ]) { temp=a[i]; a[i]=
1029 C语言文法定义与C程序的推导过程
1 阅读并理解提供给大家的C语言文法文件. 2 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 3 给出一段C程序,写出用上述文法产生这段C程序的推导过程. program → external_declaration | program external_declaration <源程序>→ <外部声明> | <源程序> <外部声明> external_declaration → function_definition | declarati
关于不同进制数之间转换的数学推导【Written By KillerLegend】
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如两双袜子为一双就采用二进制,平常的一周七天就采用七进制,每小时有六十分钟就采用六十进制.在计算机科学中我们经常用的有二进制,八进制,十进制,十六进制.计算机只能识别0和1组成的数字,但由于当一个数字比较大的时候,二进制的长度将变得非常长,对于人来说可读性非常差,而进制越大,那么数据显示的长度便越短,
UVA - 10014 - Simple calculations (经典的数学推导题!!)
UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu id=19100" style="color:blue">Submit Status Description Simple calculations id=19100" style="color:blue">The Pro
【机器学习笔记之七】PCA 的数学原理和可视化效果
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的
吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我表示怀疑啊.难道又是我智商的问题嘛╮(╯_╰)╭. 推导神经网络, 我用了一天.最后完成了,我就放心了,可以进行下一部分学习了:) 推这玩意是个脏活累活,直接记住向量化表示(结果)也是极好的. 顺便说一下,本文的图片若看不清,可以另存为本地文件放大看(scan的时候我定了较高的精度),更清楚^^ 该
『sumdiv 数学推导 分治』
sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的自然数A和B(0<=A,B<= 50000000). Output Format 只有一行,即S mod 9901的结果. Sample Input 2 3 Sample Output 15 解析 这是一道数学推导+分治的简单运用,大体思路如下. 由算数基本定理可得: \[A=p_1^{a_1}*
热门专题
linux,jupyter设置火狐默认浏览器
bootstrap中的checkbox选择框与文字没对齐
spring boot 设置maxconnections
js怎么调用wasm
webscraper会遇到反爬虫吗
MATLAB将TXT字符串写到CELL 中
fluent时间步长和迭代次数
pdf转换ppt免费工具
Xamarin.forms 扫码
ntfs-3g下载 centos
vs中为什么要加在控件后.text输出信息代表什么
qt qtextedit 禁止删除
ARP抓包实验的实验原理
vue中父组件如何监听子组件值
rabbitmq有哪些版本 5.3.8
R 语言中switch 数据框
安卓recaptcha加载不出来
sap数据字典字段initial value
ASP.net core WEBAPI 使用企业微信推送消息
微信小程序wenview与H5实时通信