此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar
AbstractFeature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descrip
Installation and Usage If you have previous/other version of OpenCV installed (e.g. cv2 module in the root of Python’s site-packages), remove it before installation to avoid conflicts. To further avoid conflicts and to make development easier, Python
转载地址:https://blog.csdn.net/vonzhoufz/article/details/46461849 主要的特征检测方法有以下几种,在一般的图像处理库中(如opencv, VLFeat, Boofcv等)都会实现. FAST ,Machine Learning for High-speed Corner Detection, 2006 SIFT,Distinctive Image Features from Scale-Invariant Keypoints,2004, i
推荐:http://www.cnblogs.com/tornadomeet/archive/2012/08/17/2644903.html SURF-Speeded Up Robust Features 是对SIFT的增强 与SIFT的不同之处: 1.DoH近似-Determinant of Hessian 也就是使用每个像素Hessian矩阵的行列式的近似值构成! 而SIFT使用原图构造的DoG图来寻找关键点! 2.高斯模糊 SIFT与SURF都要首先对原图像进行高斯模糊来构造尺度空间: SI