【BZOJ 3150】新Nim游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=3105
并不会QwQ
为什么贪心是正确的。
向小神请教了一个弱智问题(小神好神啊OTZ)
然后就写了一下好写好调的线性基糊弄糊弄。。。
2016-12-21UPD:补一下拟阵的证明:
设拟阵\(M=(S,L)\),S为所有石子数的集合,L为石子数的子集的所有子集异或和非0的集合。
遗传性:显然。。。
交换性:设\(A∈L\),\(B∈L\),且\(|A|<|B|\)。我们需要证明存在\(x∈B-A\),使得\(A∪\{x\}∈L\)。反证法:假设所有\(\{x\}\),A集合加上\(\{x\}\)后存在子集异或和为0,那么A的线性基包含B的线性基。又因为\(|A|<|B|\),所以B的子集数目大于A的子集数目。由鸽巢原理得:一定存在B的两个子集,两个子集各自的异或和都等于A中一个子集的异或和,那么这两个子集的异或和相等,与\(B∈L\)不符,所以得证。
然后直接贪心啦
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int in() {
int k = 0; char c = getchar();
for(; c < '0' || c > '9'; c = getchar());
for(; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - 48;
return k;
}
bool flag;
long long ans = 0, sum = 0;
int n, a[103], lb[33], p;
int main() {
n = in();
for(int i = 1; i <= n; ++i)
a[i] = in(), sum += a[i];
stable_sort(a + 1, a + n + 1);
for(int i = n; i >= 1; --i) {
flag = false;
p = a[i];
for(int j = 30; j >= 0; --j)
if (a[i] >> j & 1)
if (!lb[j]) {
lb[j] = a[i];
flag = true;
break;
} else
a[i] ^= lb[j];
if (!flag) ans += p;
}
printf("%lld\n", ans == sum ? -1 : ans);
return 0;
}
【BZOJ 3150】新Nim游戏的更多相关文章
- bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 535 Solved: 317[Submit][Stat ...
- 【BZOJ3105】新Nim游戏(线性基)
[BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...
- 【BZOJ-2460&3105】元素&新Nim游戏 动态维护线性基 + 贪心
3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 839 Solved: 490[Submit][Stat ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- BZOJ3105: [cqoi2013]新Nim游戏
题解: 线性基?类似于向量上的基底. 此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673 代码: #include ...
- 洛谷P4301 [CQOI2013]新Nim游戏
P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...
- 洛谷 P4301 [CQOI2013]新Nim游戏 解题报告
P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...
- 【bzoj3105】新Nim游戏
Portal--> bzoj3105 新Nim游戏 Solution 转化一下问题 首先看一下原来的Nim游戏,先手必胜的条件是:每堆数量的异或和不为\(0\) 所以在新的游戏中,如果要保证自己 ...
- 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基
[BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...
- BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作 ...
随机推荐
- 二分+最短路判定 BZOJ 2709: [Violet 1]迷宫花园
BZOJ 2709: [Violet 1]迷宫花园 Sample Input 5 ######### # # # # # # # #S# # ##### # # ## # # # ### ### ## ...
- SQL 编程
用SQL编写程序首先我们要了解SQL的一些编程方法 1.使用变量 变量:是可以存储数据值的对象,可以使用局部变量向SQL语句专递数据. (1)局部变量 T-SQL中,局部变量的名称必须以标记@作为前缀 ...
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 社交化分享SDK for Unity
前言 社交化分享,即分享到社交网络. 本文主要记录的是在Unity集成社交化分享SDK,现主流的分享SDK有如下: 1.友盟社交化分享 for unity 2.ShareSDK分享 for unity ...
- 转:Git 求生手册 - 第三章分支工作
from:http://newbranch.cn/zhi-zuo-fen-zhi-lai-gong-zuo-git-gh-pages-branching/ 来自:片段 实战 说了这么一大堆分支的东西. ...
- 使用javascript实现html页面直接下载网盘文件
公司新建一网站,用的是商派的易开店系统.设计方案中有一个是下载文件的功能,但易开店不支持上传资源,所以无法下载本站资源. 于是想到了网盘资源下载,有些网站是把页面链接到网盘资源文件下载页面,进行二次跳 ...
- PagerHelper-分页类
2016.01.29 public static class PagerHelper { #region 数字分页类 /// <summary> /// /// </summar ...
- CoreAnimation笔记
核心动画继承结构 CoreAnimation Core Animation是直接作用在CALayer上的(并非UIView上)非常强大的跨Mac OS X和iOS平台的动画处理API,Core Ani ...
- 【MySQL】使用trim函数删除两侧字符
第一个LEADING,可以删除左侧指定的字符以及字符串 SELECT trim(LEADING '/' FROM `path`) 第二个TRAILING,可以删除右侧的指定字符以及字符串 SELECT ...
- WPF中的数据验证
数据验证 WPF的Binding使得数据能够在数据源和目标之间流通,在数据流通的中间,便能够对数据做一些处理. 数据转换和数据验证便是在数据从源到目标 or 从目标到源 的时候对数据的验证和转换. V ...