Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

Sample Output

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

Hint

#include<iostream>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1000030
#define N 10009
#define INF 1000000009
/*
欧拉函数
打表
*/
LL T, n, a[N];
bool notprime[MAXN];
vector<LL> prime;
void Init()
{
memset(notprime, sizeof(notprime), false);
notprime[] = true;
//prime.resize(N);
for (LL i = ; i < MAXN; i++)
{
if (!notprime[i])
{
prime.push_back(i);
for (int j = i + i; j < MAXN; j+=i)
{
notprime[j] = true;
}
}
}
}
LL solve(LL x)
{
return *upper_bound(prime.begin(), prime.end(), x);
}
int main()
{
Init();
scanf("%lld", &T);
for(LL cas = ;cas<=T;cas++)
{
scanf("%lld", &n);
LL sum = ;
for (LL i = ; i < n; i++)
{
scanf("%lld", &a[i]);
sum += solve(a[i]);
}
printf("Case %lld: %lld Xukha\n",cas,sum);
}
return ;
}

Bi-shoe and Phi-shoe 欧拉函数 素数的更多相关文章

  1. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  2. lightoj1370欧拉函数/素数筛

    这题有两种解法,1是根据欧拉函数性质:素数的欧拉函数值=素数-1(可根据欧拉定义看出)欧拉函数定义:小于x且与x互质的数的个数 #include<map> #include<set& ...

  3. poj 2480 Longge's problem 欧拉函数+素数打表

    Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathem ...

  4. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  5. poj3696 快速幂的优化+欧拉函数+gcd的优化+互质

    这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...

  6. HDU 4483 Lattice triangle(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...

  7. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  8. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

随机推荐

  1. 如何检查ASTGO是限制并发的体验版呢?

    由于网上曾经流传过一段时间来自ASTGO官方的ASTGO体验版(下载地址:http://www.51voip.org/post/33.html),这个版本有个特色就是安装后不需要激活码激活即可打通电话 ...

  2. [Swift]LeetCode1071.字符串的最大公因子 | Greatest Common Divisor of Strings

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  3. Cracking the Coding Interview 8.7

    Given a infinite number of quarters(25cents), dimens(10cents), nickels(5cents) and pennies(1cent), w ...

  4. 使用jquery通过AJAX请求方式,后台返回了当前整个HTML页面代码

    该结果分为多种情况: 1.当前项目使用了interceptor/filter,拦截或者过滤了特定请求. 2.在HTML页面使用了表单提交,没有对表单的“onsubmit”事件做return false ...

  5. HBase与RDBMS的区别

    此讨论并不局限于HBase,也会延伸到MongoDB和Cassandra这样的NoSQL数据库. 1.RDBMS RDBMS有以下特点: 面向视图:RDBMS表使用固定的视图,表中的数据类型也会事先定 ...

  6. Unity引擎GUI之Button

    UGUI Button,可以说是真正的使用最广泛.功能最全面.几乎涵盖任何模块无所不用无所不能的组件,掌握了它的灵巧使用,你就几乎掌握了大半个UGUI! 一.Button组件: Interactabl ...

  7. objectdatasouce的温故

    在做ecxel的时候,需要前台做一个联动的效果. 记录一下这个数据源的用法,大学时候用的,忘得差不多了 首先就是往页面拖拽一个objectdatasouce的控件 然后配置数据源: 选择业务对象(其实 ...

  8. 三维重建面试13X:一些算法试题-今日头条AI-Lab

             被人牵着鼻子走,到了地方还墨明棋妙地吃一顿砖头.今日头条AI-Lab,其实我一直发现,最擅长的还是点云图像处理,且只是点云处理. 一.C++题目   New 与Malloc的区别: ...

  9. react基础篇六

    创建 Refs 使用 React.createRef() 创建 refs,通过 ref 属性来获得 React 元素.当构造组件时,refs 通常被赋值给实例的一个属性,这样你可以在组件中任意一处使用 ...

  10. Delphi 不用标题栏移动窗体

    procedure TxxxxForm.FormMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: I ...