题目链接

题目大意

$$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$

$$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$

求$T[n]\ mod\ m$

$n,m<=2^{31}-1$

这题的递推式推导有点神仙,完全想不到多用两个数组来形成递推式。研究了一下一本通上面的两个辅助数组的用途然后才会推出来这个转移矩阵

还是太菜了

题解

由题目可得

 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$

$$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$

然而$T[i]$并不可以形成递推式,所以可以设

$$nS[i]=nF[1]+nF[2]+nF[3]+...+nF[n]$$

\begin{align*}
p[i]&=nS[i]-T[i]\\
&=(n-1)F[1]+(n-2)F[2]+...+F[n]\\
&=p[i-1]+s[i-1]
\end{align*}

这个推导可以把$p[i-1]$和$S[i-1]$以及$p[i]$展开来,就可以很好理解为什么可以这样子化成递推式了

于是我们就得到了一个递推式

 $$p[i]=p[i-1]+s[i-1]$$

而答案即为$T[n]=nS[n]-p[N]$

有了递推式就可以使用矩阵乘法优化:

转移矩阵随便推推就出来了,也不难推

$$\left[
\begin {matrix}
p[i]\\
S[i]\\
F[i]\\
F[i-1]
\end {matrix}
\right]
*
\left[
\begin{matrix}
1&1&0&0\\
0&1&1&0\\
0&0&1&1\\
0&0&1&0
\end{matrix}
\right]
=
\left[
\begin{matrix}
p[i+1]\\
S[i+1]\\
F[i+1]\\
F[i]
\end{matrix}
\right]$$

然后就是套板子了

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <cmath>
#include <set>
#include <map> using namespace std ; #define I_int int
inline I_int read() {
I_int x = , f = ; char c = getchar() ;
while( c < '' || c > '' ) {
if( c == '-' ) f = - ;
c = getchar() ;
}
while( c >= '' && c <= '' ) {
x = x * + c -'' ;
c = getchar() ;
}
return x * f ;
}
#undef I_int #define ll long long
#define inf 0x3f3f3f3f
#define in(a) a = read()
#define out(a) printf( "%d " , a )
#define outn(a) printf( "%d\n" , a )
#define N 100010 ll mod ;
struct matrix {
ll m[ ][ ] ;
matrix() { memset( m , , sizeof( m ) ) ; }
ll *operator[] ( ll a ) { return m[ a ] ; }
matrix operator * ( matrix &x ) {
matrix ans ;
memset( ans.m , , sizeof( ans.m ) ) ;
for( int i = ; i < ; i ++ ) {
for( int j = ; j < ; j ++ ) {
for( int k = ; k < ; k ++ ) {
ans[ i ][ j ] = ( ans[ i ][ j ] + m[ i ][ k ] * x[ k ][ j ] % mod ) % mod ;
}
}
}
return ans ;
}
} A , B ; int n = read() ; void init() {
A[][]=A[][]=A[][]=A[][]=A[][]=A[][]=A[][]=;
B[][]=B[][]=B[][]=;
} matrix power( ll p ) {
matrix ans , base = A ;
for( int i = ; i < ; i ++ ) ans[ i ][ i ] = ;
while( p ) {
if( p & ) ans = ans * base ;
base = base * base ;
p >>= ;
}
return ans ;
} int main() {
scanf( "%lld" , &mod ) ;
init() ;
A = power( n - ) ;
matrix ans = A * B ;
printf( "%lld\n" , (n*ans[][]-ans[][]+mod)%mod ) ;
}

LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci的更多相关文章

  1. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  2. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  3. Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)

    题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...

  4. LOJ#10065. 「一本通 3.1 例 2」北极通讯网络

    题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...

  5. LOJ#10106. 「一本通 3.7 例 2」单词游戏

    题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...

  6. LOJ #10132. 「一本通 4.4 例 3」异象石

    题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...

  7. LOJ 10138 -「一本通 4.5 例 1」树的统计

    树链剖分模板题,详见这篇博客.

  8. LOJ 10155 - 「一本通 5.2 例 3」数字转换

    前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...

  9. loj #10001. 「一本通 1.1 例 2」种树

    题面 解题思路 贪心,首先按右端点排序,然后从小往大扫,因为要求树最少,所以要尽量放在右端点.然后开个bool数组判断是否种过树即可. 代码 #include<iostream> #inc ...

随机推荐

  1. ABP源码分析五:ABP初始化全过程

    ABP在初始化阶段做了哪些操作,前面的四篇文章大致描述了一下. 为个更清楚的描述其脉络,做了张流程图以辅助说明.其中每一步都涉及很多细节,难以在一张图中全部表现出来.每一步的细节(会涉及到较多接口,类 ...

  2. 一个1年前的T-SQL问题

    还记得年前的一个SQL问题,当时对SQL刚接触,因此绕开了它.用了别的办法.昨天看SQL突然想起了这个问题.百思不得其解,然后去SQL Server技术交流群,也请教了,大神高文佳,何志勇提示我因为先 ...

  3. iOS利用HealthKit框架从健康app中获取步数信息

    微信和QQ的每日步数最近十分火爆,我就想为自己写的项目中添加一个显示每日步数的功能,上网一搜好像并有相关的详细资料,自己动手丰衣足食. 统计步数信息并不需要我们自己去实现,iOS自带的健康app已经为 ...

  4. 设计模式 | 工厂方法模式(factory method)

    定义: 定义一个用于创建对象的接口,让子类决定实例化哪一个类.工厂方法使一个类的实例化延迟到其子类. 结构:(书中图,侵删) 一个工厂的抽象接口 若干个具体的工厂类 一个需要创建对象的抽象接口 若干个 ...

  5. 简单透析cookies,sessionStorage和localStorage

    首先大致说一下 1.sessionStorage是会话层的一种存储方式,当会话关闭或者退出,sessionStorage就会被清除,有效期较短 2.localStorage是浏览器提供的本地存储方式, ...

  6. Jquery 相关笔记

    //得到所有check var c = $(this).parent().find('input:checkbox'); if (c.is(':checked')) { var role = {}; ...

  7. trinitycore 魔兽服务器源码分析(二) 网络

    书接上文 继续分析Socket.h SocketMgr.h template<class T>class Socket : public std::enable_shared_from_t ...

  8. 添加网络ADB的方法(含以太网和无线)

    将下面代码添加至packages/apps/Settings/src/com/android/settings/DevelopmentSettings.java 结合之前的添加wifi adb的博客 ...

  9. 【转载】怎样在C++工程中集成C#窗口

    原文:http://www.cnblogs.com/clever101/archive/2009/12/14/1624204.html 本文转自博客园,此文作者依据codeproject英文版本翻译! ...

  10. eclipse导入maven-jeecg项目

    参考内容:http://blog.csdn.net/zhangdaiscott/article/details/50915206   [技术文档]jeecg3.7.1-maven搭建环境入门 由于ma ...