大数据-hadoop HA集群搭建
一、安装hadoop、HA及配置journalnode
实现namenode HA
实现resourcemanager HA
namenode节点之间通过journalnode同步元数据
首先下载需要版本的hadoop,我用的版本是hadoop-2.9.1
安装到5台机器上
master1 master2上安装namenode
master1 master2上配置resourcemanager
slave1 slave2 slave3上安装datanode
slave1 slave2 slave3上配置journalnode
slave1 slave2 slave3上配置nodemanager
1、将文件下载到、opt/workspace/目录下
2、解压缩
tar -zxvf hadoop-2.9..tar.gz
3、进行文件配置
对hadoop-env.sh mapred-site.xml hdfs-site.xml yarn-site.xml core-site.xml slaves进行修改
(1)对core-site.xml进行配置
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://hadoop-test</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value></value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>master1:,master2:,slave1:,slave2:,slave3:</value>
</property>
<!-- hadoop链接zookeeper的超时时长设置 --> <property>
<name>ha.zookeeper.session-timeout.ms</name>
<value></value>
<description>ms</description>
</property>
<property>
<name>hadoop.native.lib</name>
<value>false</value>
<description>Should native hadoop libraries, if present, be used.</description>
</property>
<property>
<name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>
</configuration>
(2)对hadoop-env.sh进行配置 添加
export JAVA_HOME=/opt/workspace/jdk1.8
有需要时才添加端口,不是22默认端口
export HADOOP_SSH_OPTS="-p 61333"
(3)对mapred-site.xml进行配置
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<!-- MR YARN Application properties --> <property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<description>The runtime framework for executing MapReduce jobs. Can be one of local, classic or yarn.</description>
</property> <!-- jobhistory properties -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>159.226.48.203:</value>
<description>MapReduce JobHistory Server IPC host:port</description>
</property> <property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>159.226.48.203:</value>
<description>MapReduce JobHistory Server Web UI host:port</description>
</property> <property>
<name>mapreduce.task.io.sort.mb</name>
<value></value>
</property> <property>
<name>mapreduce.reduce.shuffle.parallelcopies</name>
<value></value>
</property> <property>
<name>mapred.child.java.opts</name>
<value>-Xmx1024m</value>
</property> <!--MR ApplicationMaster -->
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value></value>
</property> <property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx2867m</value>
</property>
</configuration>
(4)对hdfs-site.xml进行配置
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>dfs.nameservices</name>
<value>hadoop-test</value>
<description>
Comma-separated list of nameservices.
</description>
</property>
<property>
<name>dfs.ha.namenodes.hadoop-test</name>
<value>nn1,nn2</value>
<description>
The prefix for a given nameservice, contains a comma-separated
list of namenodes for a given nameservice (eg EXAMPLENAMESERVICE).
</description>
</property>
<property>
<name>dfs.namenode.rpc-address.hadoop-test.nn1</name>
<value>master1:</value>
<description>
RPC address for nomenode1 of hadoop-test
</description>
</property>
<property>
<name>dfs.namenode.rpc-address.hadoop-test.nn2</name>
<value>master2:</value>
<description>
RPC address for nomenode2 of hadoop-test
</description>
</property>
<property>
<name>dfs.namenode.http-address.hadoop-test.nn1</name>
<value>master1:</value>
<description>
The address and the base port where the dfs namenode1 web ui will listen on.
</description>
</property>
<property>
<name>dfs.namenode.http-address.hadoop-test.nn2</name>
<value>master2:</value>
<description>
The address and the base port where the dfs namenode2 web ui will listen on.
</description>
</property> <!-- 启用webhdfs -->
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/opt/hadoop/dfs/name</value>
<description>Path on the local filesystem where theNameNode stores the namespace and transactions logs persistently.</description>
</property>
<!--配置journalnode-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://slave1:8485;slave2:8485;slave3:8485/hadoop-test</value>
<description>A directory on shared storage between the multiple namenodes
in an HA cluster. This directory will be written by the active and read
by the standby in order to keep the namespaces synchronized. This directory
does not need to be listed in dfs.namenode.edits.dir above. It should be
left empty in a non-HA cluster.
</description>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/opt/hadoop/dfs/data</value>
<description>Comma separated list of paths on the localfilesystem of a DataNode where it should store its blocks.</description>
</property>
<property>
<name>dfs.replication</name>
<value></value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
<description>
Whether automatic failover is enabled. See the HDFS High
Availability documentation for details on automatic HA
configuration.
</description>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/hadoop/dfs/journalnode</value>
</property> <!-- 开启NameNode失败自动切换 -->
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.hadoop-test</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property> <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property> <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/hadoop/.ssh/id_rsa</value>
</property> <!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value></value>
</property>
<property>
<name>ha.failover-controller.cli-check.rpc-timeout.ms</name>
<value></value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
</configuration>
(5)对yarn-site.xml进行配置 (注意修改下面第一段代码,不同的master需要修改value值)
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm2</value>
<description>If we want to launch more than one RM in single node,we need this configuration</description>
</property>
<?xml version="1.0"?>
<configuration>
<!--rm失联后重新链接的时间-->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value></value>
</property> <!--开启resourcemanagerHA,默认为false-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property> <!--配置resourcemanager-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property> <property>
<name>ha.zookeeper.quorum</name>
<value>master1:,master2:,slave1:,slave2:,slave3:</value>
</property> <!--开启故障自动切换-->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property> <property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>master1</value>
</property> <property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>master2</value>
</property> <!--
在hadoop001上配置rm1,在hadoop002上配置rm2,
注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改
-->
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm2</value>
<description>If we want to launch more than one RM in single node,we need this configuration</description>
</property> <!--开启自动恢复功能-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property> <!--配置与zookeeper的连接地址-->
<property>
<name>yarn.resourcemanager.zk-state-store.address</name>
<value>master1:,master2:,slave1:,slave2:,slave3:</value>
</property> <property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property> <property>
<name>yarn.resourcemanager.zk-address</name>
<value>master1:,master2:,slave1:,slave2:,slave3:</value>
</property> <property>
<name>yarn.resourcemanager.cluster-id</name>
<value>appcluster-yarn</value>
</property> <!--schelduler失联等待连接时间-->
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value></value>
</property> <!--配置rm1-->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master1:</value>
</property> <property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master1:</value>
</property> <property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>159.226.48.202:</value>
</property> <property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>master1:</value>
</property> <property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>master1:</value>
</property> <property>
<name>yarn.resourcemanager.ha.admin.address.rm1</name>
<value>master1:</value>
</property> <!--配置rm2-->
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>master2:</value>
</property> <property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>master2:</value>
</property> <property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>159.226.48.203:</value>
</property> <property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>master2:</value>
</property> <property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>master2:</value>
</property> <property>
<name>yarn.resourcemanager.ha.admin.address.rm2</name>
<value>master2:</value>
</property> <property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property> <property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property> <property>
<name>yarn.nodemanager.local-dirs</name>
<value>/opt/workspace/hadoop/yarn/local</value>
</property> <property>
<name>yarn.nodemanager.log-dirs</name>
<value>/opt/workspace/hadoop/yarn/log</value>
</property> <property>
<name>mapreduce.shuffle.port</name>
<value></value>
</property> <!--故障处理类-->
<property>
<name>yarn.client.failover-proxy-provider</name>
<value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
</property> <property>
<name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
<value>/yarn-leader-election</value>
<description>Optionalsetting.Thedefaultvalueis/yarn-leader-election</description>
</property>
<!--参数解释:启用的资源调度器主类。目前可用的有FIFO、Capacity Scheduler和Fair Scheduler。 -->
<!--<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
<description>fair-scheduler conf location</description>
<name>yarn.scheduler.fair.allocation.file</name>
<value>${yarn.home.dir}/etc/hadoop/fairscheduler.xml</value>
</property>-->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!--参数解释:启用的资源调度器主类。目前可用的有FIFO、Capacity Scheduler和Fair Scheduler。 -->
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
<!--yarn.scheduler.minimum-allocation-mb/ yarn.scheduler.maximum-allocation-mb
参数解释:单个可申请的最小/最大内存资源量。比如设置为1024和3072,则运行MapRedce作业时,每个Task最少可申请1024MB内存,最多可申请3072MB内存。 -->
<property>
<description></description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value></value>
</property>
<property>
<description></description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value></value>
</property>
<!--:单个可申请的最小/最大虚拟CPU个数。比如设置为1和4,则运行MapRedce作业时,每个Task最少可申请1个虚拟CPU,最多可申请4个虚拟CPU。 -->
<property>
<description></description>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value></value>
</property>
<property>
<description></description>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value></value>
</property> <property>
<description></description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value></value>
</property>
<property>
<description></description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value></value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
(6)修改slaves文件

配置完成
二、启动服务
1、首先启动5台服务器的zookeeper服务
cd /opt/workspace/zookeeper/zookeeper-3.4.
bin/zkServer.sh
2、slave1 slave2 slave3 上启动journalnode
[root@slave1 hadoop-2.9.]# sbin/hadoop-daemon.sh start journalnode
[root@slave2 hadoop-2.9.]# sbin/hadoop-daemon.sh start journalnode
[root@slave3 hadoop-2.9.]# sbin/hadoop-daemon.sh start journalnode
3、对master1进行格式化
[root@master1 hadoop-2.9.]# bin/hdfs namenode -format
4、master2进行元数据同步
[root@master2 hadoop-2.9.]# bin/hdfs namenode -bootstrapStandby
5、启动hadoop
[root@master1 hadoop-2.9.]# sbin/start-dfs.sh
6、启动resourcemanager
[root@master1 hadoop-2.9.]# sbin/start-yarn.sh
master2上手动启动resourcemanager
[root@master1 hadoop-2.9.]# sbin/yarn-daemon.sh start resourcemanager
7、成功启动服务后的截图





三、HA功能测试


问题解决:
在进行启动时,出现22端口拒绝访问,因为22端口为默认ssh访问端口,而我们的服务器不是22,所以需要修改一下

在hadoop-env.sh文件中添加
export HADOOP_SSH_OPTS="-p 61333"
防火墙问题:进行操作时需要将机器的防火墙关闭
[root@master1 bin]# systemctl start firewalld.service #启动firewall
[root@master1 bin]# systemctl stop firewalld.service #停止firewall
[root@master1 bin]# systemctl disable firewalld.service #禁止firewall开机启动
参考:https://blog.csdn.net/sinat_25943197/article/details/81906060
大数据-hadoop HA集群搭建的更多相关文章
- 大数据-HBase HA集群搭建
1.下载对应版本的Hbase,在我们搭建的集群环境中选用的是hbase-1.4.6 将下载完成的hbase压缩包放到对应的目录下,此处我们的目录为/opt/workspace/ 2.对已经有的压缩包进 ...
- 大数据-spark HA集群搭建
一.安装scala 我们安装的是scala-2.11.8 5台机器全部安装 下载需要的安装包,放到特定的目录下/opt/workspace/并进行解压 1.解压缩 [root@master1 ~]# ...
- hadoop ha集群搭建
集群配置: jdk1.8.0_161 hadoop-2.6.1 zookeeper-3.4.8 linux系统环境:Centos6.5 3台主机:master.slave01.slave02 Hado ...
- hadoop HA集群搭建步骤
NameNode DataNode Zookeeper ZKFC JournalNode ResourceManager NodeManager node1 √ √ √ √ node2 ...
- 大数据中HBase集群搭建与配置
hbase是分布式列式存储数据库,前提条件是需要搭建hadoop集群,需要Zookeeper集群提供znode锁机制,hadoop集群已经搭建,参考 Hadoop集群搭建 ,该文主要介绍Zookeep ...
- hadoop HA集群搭建(亲测)
1.hadoop-env.sh 2.core-site.xml <configuration> <!-- 指定hdfs的nameservice为ns1 --> <prop ...
- 大数据:spark集群搭建
创建spark用户组,组ID1000 groupadd -g 1000 spark 在spark用户组下创建用户ID 2000的spark用户 获取视频中文档资料及完整视频的伙伴请加QQ群:9479 ...
- 大数据学习——Storm集群搭建
安装storm之前要安装zookeeper 一.安装storm步骤 1.下载安装包 2.解压安装包 .tar.gz storm 3.修改配置文件 mv /root/apps/storm/conf/st ...
- 大数据中Linux集群搭建与配置
因测试需要,一共安装4台linux系统,在windows上用vm搭建. 对应4个IP为192.168.1.60.61.62.63,这里记录其中一台的搭建过程,其余的可以直接复制虚拟机,并修改相关配置即 ...
随机推荐
- Linux安装设置VNC远程桌面
1,先检查一下服务器是否已经安装了VNC服务,没有安装,检查服务器的是否安装VNC的命令如下[root@linuxidc rpms]# ps -eaf|grep vncroot 1789 ...
- Python原始套接字编程-乾颐堂
在实验中需要自己构造单独的HTTP数据报文,而使用SOCK_STREAM进行发送数据包,需要进行完整的TCP交互. 因此想使用原始套接字进行编程,直接构造数据包,并在IP层进行发送,即采用SOCK_R ...
- win10 家庭版使用注册表关闭windows defender
管理员身份运行 reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender" /v " ...
- real-Time Correlative Scan Matching
启发式算法(heuristic algorithm)是相对于最优化算法提出的.一个问题的最优算法求得该问题每个实例的最优解.启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算 ...
- MySQL 存储过程 -流程控制的使用
#五.流程控制的使用 #1.IF 使用 create PROCEDURE iftest1() BEGIN DECLARE a int DEFAULT 10; -- IF (a>1 &&a ...
- [GO]channel实现同步
goroutine运行在相同的地址空间,因此访问共享内存必须 做好同步.goroutine奉行通过通信来共享内存,而不是共享内存通信 它跟map一样,使用make来创建,它是一个引用 ,而不是值传递 ...
- java中的继承(is a )和组合(has a)
我们知道java语言有三大特性:封装,继承,多态 但是继承和封装却是一对有点矛盾的两个方面,怎么理解?? 我们想想:封装的目的是想让隐藏类中的属性和方法.但是在继承过程中,我们的子类肯定会继承父类的方 ...
- Discuz!X2截屏控件手动安装教程-Xproer.ScreenCapture
版权所有 2009-2015 荆门泽优软件有限公司 保留所有权利 官方网站:http://www.ncmem.com 官方博客:http://www.cnblogs.com/xproer 产品首页:h ...
- 编写高质量代码改善C#程序的157个建议——建议62:避免嵌套异常
建议62:避免嵌套异常 应该允许异常在调用堆栈上往上传,不要过多的使用catch,然后再throw.过多的使用catch会带来两个问题: 1)代码更多了.这看上去好像你根本不知道怎么处理异常,所以你总 ...
- 修复DBGrideh使用TMemTableEh在Footers求平均值为0的Bug
在一个项目中,使用DBGrideh,当使用自带的内存数据集时,对于Footers添加的求平均值,一直显示为0,其他汇总数据都是可以的,而切换使用TClientDataSet或者TADODataSet, ...