吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_classification():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 digits 数据集
digits=datasets.load_digits()
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #集成学习AdaBoost算法回归模型
def test_AdaBoostRegressor(*data):
'''
测试 AdaBoostRegressor 的用法,绘制 AdaBoostRegressor 的预测性能随基础回归器数量的影响
'''
X_train,X_test,y_train,y_test=data
regr=ensemble.AdaBoostRegressor()
regr.fit(X_train,y_train)
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
estimators_num=len(regr.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostRegressor")
plt.show() # 获取分类数据
X_train,X_test,y_train,y_test=load_data_classification()
# 调用 test_AdaBoostRegressor
test_AdaBoostRegressor(X_train,X_test,y_train,y_test)

def test_AdaBoostRegressor_base_regr(*data):
'''
测试 AdaBoostRegressor 的预测性能随基础回归器数量的和基础回归器类型的影响
'''
from sklearn.svm import LinearSVR X_train,X_test,y_train,y_test=data
fig=plt.figure()
regrs=[ensemble.AdaBoostRegressor(), # 基础回归器为默认类型
ensemble.AdaBoostRegressor(base_estimator=LinearSVR(epsilon=0.01,C=100))] # 基础回归器为 LinearSVR
labels=["Decision Tree Regressor","Linear SVM Regressor"]
for i ,regr in enumerate(regrs):
ax=fig.add_subplot(2,1,i+1)
regr.fit(X_train,y_train)
## 绘图
estimators_num=len(regr.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
ax.set_title("Base_Estimator:%s"%labels[i])
plt.suptitle("AdaBoostRegressor")
plt.show() # 调用 test_AdaBoostRegressor_base_regr
test_AdaBoostRegressor_base_regr(X_train,X_test,y_train,y_test)

def test_AdaBoostRegressor_learning_rate(*data):
'''
测试 AdaBoostRegressor 的预测性能随学习率的影响
'''
X_train,X_test,y_train,y_test=data
learning_rates=np.linspace(0.01,1)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
traing_scores=[]
testing_scores=[]
for learning_rate in learning_rates:
regr=ensemble.AdaBoostRegressor(learning_rate=learning_rate,n_estimators=500)
regr.fit(X_train,y_train)
traing_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(learning_rates,traing_scores,label="Traing score")
ax.plot(learning_rates,testing_scores,label="Testing score")
ax.set_xlabel("learning rate")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostRegressor")
plt.show() # 调用 test_AdaBoostRegressor_learning_rate
test_AdaBoostRegressor_learning_rate(X_train,X_test,y_train,y_test)

def test_AdaBoostRegressor_loss(*data):
'''
测试 AdaBoostRegressor 的预测性能随损失函数类型的影响
'''
X_train,X_test,y_train,y_test=data
losses=['linear','square','exponential']
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
for i ,loss in enumerate(losses):
regr=ensemble.AdaBoostRegressor(loss=loss,n_estimators=30)
regr.fit(X_train,y_train)
## 绘图
estimators_num=len(regr.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score:loss=%s"%loss)
ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score:loss=%s"%loss)
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
plt.suptitle("AdaBoostRegressor")
plt.show() # 调用 test_AdaBoostRegressor_loss
test_AdaBoostRegressor_loss(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型的更多相关文章
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多维缩放降维MDS模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...
随机推荐
- Networking POJ - 1287 最小生成树板子题
#include<iostream> #include<algorithm> using namespace std; const int N=1e5; struct edge ...
- vue加载单文件使用vue-loader报错
报错信息如下:ERROR in ./src/login.vue Module Error (from ./node_modules/vue-loader/lib/index.js): vue-load ...
- 分析器错误消息: Reference.svcmap:未能加载文件
-------------- 缺少了:System.Web.Razor.dll
- 题解【AcWing95】费解的开关
题面 一道非常好的递推练习题. 我们考虑每次枚举第一行的操作,由上一行的状态递推出下一行的状态,最后判断最后一行是否全部为 \(1\) 即可. 实现代码时要注意一些细节问题. #include < ...
- 杭电oj_2035——人见人爱A^B(java实现)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2035 思路:(网上学来的,偏向数学的不咋懂/捂脸)每次乘法的时候都取后三位(可能有些含糊,直接看代码吧 ...
- phpstorm对比代码
方法一 首先在phpstorm中左侧的资源管理器中,按住键盘上的CTRL键选中两个文件,然后鼠标右键,点击菜单中的"Compare Tow Files",就可以了,如下图 方法二 ...
- 菜鸟教程 Missing parentheses in call to 'print'
个人博客 地址:http://www.wenhaofan.com/article/20180618180327 >>> print "hello" SyntaxE ...
- 如何用python操作XML文件
备注: 基于python3 背景:在统计覆盖率的时候希望绕属性name为test的节点 具体实现源码如下所示,基本都是基于节点属性操作的,当然也就可以基于tag等其他标签去做,可根据需要调整 from ...
- OpenGL 编程指南 (4)
1.OpenGL用户裁剪需要使用一个vertex shader的内置变量gl_ClipDistance,它是一个声明的时没有指定大小的数组,因此需要重新声明它的大小或者将它作为一个编译时的常量使用(啥 ...
- git回退版本: 回退本地代码版本 + 回退服务器代码版本
1.回退本地代码版本 借助IDEA开发工具回退版本,点击Version Control ,查看历史版本号: 右击想要回退的版本号,选择Reset Current Branch hear... 选择 H ...