吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_classification():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 digits 数据集
digits=datasets.load_digits()
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(digits.data,digits.target,test_size=0.25,random_state=0,stratify=digits.target) #集成学习AdaBoost算法回归模型
def test_AdaBoostRegressor(*data):
'''
测试 AdaBoostRegressor 的用法,绘制 AdaBoostRegressor 的预测性能随基础回归器数量的影响
'''
X_train,X_test,y_train,y_test=data
regr=ensemble.AdaBoostRegressor()
regr.fit(X_train,y_train)
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
estimators_num=len(regr.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostRegressor")
plt.show() # 获取分类数据
X_train,X_test,y_train,y_test=load_data_classification()
# 调用 test_AdaBoostRegressor
test_AdaBoostRegressor(X_train,X_test,y_train,y_test)

def test_AdaBoostRegressor_base_regr(*data):
'''
测试 AdaBoostRegressor 的预测性能随基础回归器数量的和基础回归器类型的影响
'''
from sklearn.svm import LinearSVR X_train,X_test,y_train,y_test=data
fig=plt.figure()
regrs=[ensemble.AdaBoostRegressor(), # 基础回归器为默认类型
ensemble.AdaBoostRegressor(base_estimator=LinearSVR(epsilon=0.01,C=100))] # 基础回归器为 LinearSVR
labels=["Decision Tree Regressor","Linear SVM Regressor"]
for i ,regr in enumerate(regrs):
ax=fig.add_subplot(2,1,i+1)
regr.fit(X_train,y_train)
## 绘图
estimators_num=len(regr.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score")
ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
ax.set_title("Base_Estimator:%s"%labels[i])
plt.suptitle("AdaBoostRegressor")
plt.show() # 调用 test_AdaBoostRegressor_base_regr
test_AdaBoostRegressor_base_regr(X_train,X_test,y_train,y_test)

def test_AdaBoostRegressor_learning_rate(*data):
'''
测试 AdaBoostRegressor 的预测性能随学习率的影响
'''
X_train,X_test,y_train,y_test=data
learning_rates=np.linspace(0.01,1)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
traing_scores=[]
testing_scores=[]
for learning_rate in learning_rates:
regr=ensemble.AdaBoostRegressor(learning_rate=learning_rate,n_estimators=500)
regr.fit(X_train,y_train)
traing_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(learning_rates,traing_scores,label="Traing score")
ax.plot(learning_rates,testing_scores,label="Testing score")
ax.set_xlabel("learning rate")
ax.set_ylabel("score")
ax.legend(loc="best")
ax.set_title("AdaBoostRegressor")
plt.show() # 调用 test_AdaBoostRegressor_learning_rate
test_AdaBoostRegressor_learning_rate(X_train,X_test,y_train,y_test)

def test_AdaBoostRegressor_loss(*data):
'''
测试 AdaBoostRegressor 的预测性能随损失函数类型的影响
'''
X_train,X_test,y_train,y_test=data
losses=['linear','square','exponential']
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
for i ,loss in enumerate(losses):
regr=ensemble.AdaBoostRegressor(loss=loss,n_estimators=30)
regr.fit(X_train,y_train)
## 绘图
estimators_num=len(regr.estimators_)
X=range(1,estimators_num+1)
ax.plot(list(X),list(regr.staged_score(X_train,y_train)),label="Traing score:loss=%s"%loss)
ax.plot(list(X),list(regr.staged_score(X_test,y_test)),label="Testing score:loss=%s"%loss)
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
plt.suptitle("AdaBoostRegressor")
plt.show() # 调用 test_AdaBoostRegressor_loss
test_AdaBoostRegressor_loss(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型的更多相关文章
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——人工神经网络与原始感知机模型
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...
- 吴裕雄 python 机器学习——等度量映射Isomap降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多维缩放降维MDS模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...
- 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型
from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...
随机推荐
- Win10安装3 —— U盘启动工具安装
本文内容皆为作者原创,如需转载,请注明出处:https://www.cnblogs.com/xuexianqi/p/12364593.html 一:准备一个空U盘 U盘容量推荐至少8个G,先提前备份好 ...
- 转载:arm neon intrinsic
转自:https://blog.csdn.net/hemmingway/article/details/44828303/ https://blog.csdn.net/chshplp_liaoping ...
- SE篇
1. List 和 Set 区别 List 特点:元素有放入顺序,元素可重复 Set 特点:元素无放入顺序,元素不可重复,重复元素会覆盖掉 2. List 和 Map 区别 ...
- Django文件夹
Django文件 App文件夹 migrations文件 生成models创建表的翻译语句 telemplatetags文件夹 telemplatetags文件夹下的文件专门用来创建自定义标签.自定义 ...
- 关于spring boot集成MQTT
安装 说到mqtt,首先肯定要安装了,安装什么的地址:http://activemq.apache.org/ap...我本地是Windows的环境,所以装的是Windows版本,这里是第一个注意的地方 ...
- codeforces 1283F. DIY Garland(树+优先队列)
题目连接:https://codeforces.com/contest/1283/problem/F 题意:一根电线连接着两个点,这两个点分别代表着两个灯,灯有自己的编号i,其亮度是2 ^ i,每根电 ...
- JavaScript 运算,流程控制和循环
算数运算符 算术运算符 描叙 运算符 实例 加 + 10 + 20 = 30 减 - 10 – 20 = -10 乘 * 10 * 20 = 600 除 / 10 / 20 = 0.5 取余数 % 返 ...
- 大数据-HBase
HBase HBase(Hadoop Database)基于Google的BigTable论文,依赖HDFS进行存储.适合存储大体量数据.HBase是高可靠性(数据安全).高性能(存取效率).面向列. ...
- JS高级---继承
继承 面向对象编程思想: 根据需求, 分析对象, 找到对象有什么特征和行为, 通过代码的方式来实现需求, 要想实现这个需求,就要创建对象 ,要想创建对象, 就应该显示有构造函数, 然后通过构造函数来创 ...
- 慎用--skip-grant-tables命令
该命令作用是跳过授权表,也就是说谁都能进入mysql看到所有数据表,输入任意字符账号密码都可以 当忘记账号密码时可以使用改命令修改密码,但是要随用随关,重启mysql,不然服务器上会有很大的风险. 介 ...